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Approach to quantum Kramers’ equation and barrier crossing dynamics
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We have presented a simple approach to quantum theory of Brownian motion and barrier crossing dynamics.
Based on an initial coherent state representation of bath oscillators and an equilibrium canonical distribution of
quantum-mechanical mean values of their co-ordinates and momenta we have derived ac number generalized
quantum Langevin equation. The approach allows us to implement the method of classical non-Markovian
Brownian motion to realize an exact generalized non-Markovian quantum Kramers’ equation. The equation is
valid for arbitrary temperature and friction. We have solved this equation in the spatial diffusion-limited regime
to derive quantum Kramers’ rate of barrier crossing and analyze its variation as a function of the temperature
and friction. While almost all the earlier theories rest on quasiprobability distribution functions~e.g., Wigner
function! and path integral methods, the present work is based ontrue probability distribution functionsand is
independent of path integral techniques. The theory is a natural extension of the classical theory to quantum
domain and provides a unified description of thermally activated processes and tunneling.
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I. INTRODUCTION

Ever since Kramers@1# reported his seminal work on th
Brownian motion in phase space, the theory of noise-indu
escape from metastable states has become a central iss
several areas of physical and chemical sciences. The es
is governed by Brownian motion in addition to the chara
teristic dynamical motion of the system in presence of a
tential V(X), Brownian motion being due to the therm
forces, which in turn are associated with the dissipat
through fluctuation-dissipation relation at a finite tempe
ture T. The problem and many of its variants have be
addressed by a large number of workers over the last sev
decades at various levels of description and have been
tended to semiclassical and quantum domains@1–14#. A ma-
jor impetus in the development of quantum theory of dis
pative processes was the discovery of laser in 19
followed by significant advancement in the field of nonline
and quantum optics in 1970s and 1980s when the exten
applications of nonequilibrium quantum-statistical metho
were made@15,16#. Various nonlinear optical processes a
phenomena were described with the help of operator Lan
vin equations, density operator methods, and the assoc
quasiclassical distribution functions. However, these dyna
cal semigroup methods of quantum optics could not g
much ground in the theory of activated rate processes du
the fact that these are primarily based on system-reser
weak coupling and Markov approximations@15#, which are
often too drastic in the situations pertaining to chemical
namics and condensed matter physics. Subsequent to
developments, quantum Brownian motion@2,4,5,17–22#
emerged as a subject of renewed interest in early 1980s w
the problem of dissipative quantum tunneling was addres
by Leggett and others and almost simultaneously quan
Kramers’ problem and some allied issues attracted ser
attention of a number of physical chemists. We refer
@2,3,23# for an overview.

The aforesaid development of the quantum theory
1063-651X/2002/65~2!/021109~13!/$20.00 65 0211
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Brownian motion essentially rests on the method of fun
tional integrals@20#. This is based on the calculation of th
partition function for the Hamiltonian of the system coupl
to its environment and a noncanonical quantization pro
dure. The classical theories on the other hand rely on
partial differential equations describing the evolution of t
probability distribution functions of the system both in th
Markovian and non-Markovian regions@1,3,24–27#. The
methods of the classical and the quantum theories are
widely different in their approaches. The question is whet
there is any natural extension of the classical theory to
quantum domain. For example, one might ask what is
quantum analog of the classical Kramers’ equation or Smo
chowskii’s equation? Is it possible to generalize Krame
method of treatment of barrier crossing dynamics within
quantum-mechanical framework so that the usual class
thermal activated process and quantum tunneling can be
scribed within an unified scheme?

We intend to address these issues in the present pa
Specifically our object is twofold.

~1! Our primary aim here is to develop aquantum analog
of classical non-Markovian Kramers’ equation, which de-
scribes quantum Brownian motion of a particle in a for
field at an arbitrary temperature and coupling in terms oftrue
probability distributionfunction rather than quasiprobabilit
function @28,29#. The generalized quantum Kramers’ equ
tion ~GQKE! reduces to its classical counterpart in the lim
h→0 both in Markovian and non-Markovian description
The probability distribution functions remain well behave
in the full quantum limit.

~2! While the existing methods of calculation of quantu
Kramers’ rate are based on path integral techniques, we s
GQKE for barrier crossing dynamics as a boundary va
problem taking care of the full quantum nature of the syst
and the bath. The generalized rate in the spatial diffusi
limited regime reduces to Kramers-Grote-Hynes’ rate in
classical limit and to pure tunneling rate in the quantum lim
at zero temperature. To the best of our knowledge, the im
©2002 The American Physical Society09-1
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mentation of a differential equation based approach, as
present one, has not been tried till data for a full quantu
mechanical calculation of the rate.

Based on an initial coherent state representation of
bath oscillators and an equilibrium canonical distribution
the quantum-mechanical mean values of their co-ordin
and momenta, we derive a generalized quantum Lang
equation inc numbers. The bath imparts classical lookingc
number quantum noise, which satisfies standard fluctuat
dissipation relation. The simplicity of the treatment lies
the fact that the quantum Langevin equation is amenable
theoretical analysis in terms of the well known classical n
Markovian theory of Brownian motion@24,25# so that the
GQKE assumes the form of its classical counterpart. In w
follows we show that GQKE can be solved in the spirit
Kramers’ method to calculate the quantum escape rate.
recasting of the quantum problem into a classical form
lows us to realize the various limits of the theory on a ge
eral footing.

The organization of the paper is as follows. We introdu
the system-reservoir model and an ensemble averaging
cedure to derive the generalized quantum Langevin equa
in a c number form in the following section. In Sec. III w
derive the corresponding GQKE followed by a calculation
quantum rate of escape in Sec. IV. The key result is ill
trated in Sec. V by assuming a Lorentzian density distri
tion of bath oscillators and a specific cubic potential. T
paper is concluded in Sec. VI.

II. THE GENERALIZED QUANTUM LANGEVIN
EQUATION IN C NUMBERS

To start with we consider the standard system heat b
model of Zwanzig form@30#. The Hamiltonian is given by

Ĥ5
P̂2

2
1V~X̂!1(

j
F p̂ j

2

2
1

1

2
k j~ q̂ j2X̂!2G . ~1!

Here X̂ and Ṗ are the co-ordinate and momentum operat
of the Brownian particle~the system! of unit mass and the se
$q̂ j ,p̂ j% is the set of co-ordinate and momentum operat
for the heat bath particles. The mass of thej th particle is
unity andk j is the spring constant of the spring connecting
to the Brownian particle. The potentialV(X̂) is due to the
external force field for the Brownian particle. The c
ordinate and momentum operators follow the usual comm
tation relations

@X̂,P̂#5 i\ and @ q̂ j ,p̂ j #5 i\d i j ~2!

Eliminating the bath degrees of freedom in the usual w
@15,31# we obtain the operator Langevin equation for t
particle

Ẍ̂1E
0

1

dt8b~ t2t8!Ẋ̂~ t8!1V8~X̂!5F̂~ t ! ~3!

where the noise operatorF̂(t) and memory kernelb(t) are
given by
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F̂~ t !5(
j

u$q̂1~0!2X̂~0!%k j cosv j t1 p̂ j~0!k j
1/2sinv j tu.

~4!

and

b~ t !5(
j

k j cosv j t, ~5!

wherev j
25k j and the initial variations of the heat bath var

ables q̂ j (0) and p̂ j (0) occur in the force termF̂(t). The
relevant quantum-statistical averages are well known

^F̂&QS50 ~6!

and

1
2 @^F̂~ t8!F̂~ t !&QS1^F̂~ t !F̂~ t8!&QS#

5
1

2 (
j

k j\v j S coth
\v j

2kbTD cosv j~ t2t8!. ~7!

Here^¯&QS refers to quantum-statistical average on the b
degrees of freedom. To arrive at the above relations,
assumes@31# that the bath oscillators are canonically distri
uted with respect to the bath Hamiltonian att50 so that for
any operatorÔ the average is

^Ô&QS5
TrÔ exp~2Ĥbath/kBT!

Tr exp~2Ĥbath/kBT!
~8!

where Ĥbath5S j@( p̂ j
2/2)1(1/2)k j (q̂ j2X̂)2# By trace we

mean carrying out quantum-statistical average with num
states of the bath oscillators multiplied by the arbitrary st
of the particle. Equation~7! is the celebrated fluctuation
dissipation relation~FDR!.

Equation~3! is an exact quantum Langevin equation
operator form, which is a standard textbook material@15,31#.
Our aim here is to replace it by an equivalent quantum g
eralized Langevin equation~QGLE! in c numbers. It is im-
portant to mention here that again this is not a new prob
@15,16# so long as one is restricted to standard quasiclass
methods of Wigner functions and the like. In general, ho
ever, one is confronted with serious trouble of negativity
singularity of these quasiprobability distribution functions
the full quantum domain. To address the problem of quant
non-Markovian dynamics in terms of atrue probabilistic de-
scriptionwe, however, follow a different procedure. Our a
proach here is to split up the quantum-statistical averag
procedure in two distinct steps. Wefirst carry out the
quantum-mechanical average of Eq.~3!

^ Ẍ̂&1^V8~X!&1E
0

t

b~ t2t8!^ Ẋ̂~ t8!&dt85^F̂~ t !&, ~9!

where the averaging is taken over the initial product se
rable quantum states of the particle and the bath oscillato
t50, uf&$ua1&ua2&¯uaN&%. Here uf& denotes any arbitrary
9-2
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APPROACH TO QUANTUM KRAMERS’ EQUATION AND . . . PHYSICAL REVIEW E65 021109
initial state of the particle andua i& corresponds to the initia
coherent state of thei th bath oscillator.ua i& is given by
ua i&5exp(2uaiu2/2)Sni 50

` (a i
ni/Ani)uni&, a i is expressed in

terms of the variables of the coordinate and momentum
the i th oscillator ^q̂i(0)&5A\/(2v i)(a i1a i* ) and ^ p̂ j (0)&
5 iA\v i /2(a i2a i* ), respectively. It is important to note tha

^F̂(t)& of Eq. ~9! is a classical-like noise term which, i
general, is a nonzero number because of the averaging
cedure over the coordinate and momentum operators of
bath oscillators with respect to initial coherent state and
given by

^F̂~ t !&5(
j

@$^q̂ j~0!&2^X̂~0!&%k j coswjt

1^ p̂ j~0!&k j
1/2sinwjt#5 f ~ t ! ~10!

We now turn to thesecondaveraging. To realizef (t) an
effectivec-number noise we now demand that it must sati

^ f ~ t !&s50

and

^ f ~ t ! f ~ t8!&s5
1

2 ( k j\v j S coth
\v j

2kbTD cosv j~ t2t8!.

~11!

That is, f (t) is zero centered and satisfies quantu
fluctuation-dissipation relation. This may be achieved if a
only if one introduces the following canonical distribution
quantum-mechanical mean values of the bath oscillator
t50:

Pj5expF2
uv j

2$^q̂ j~0!&2^X̂~0!&%21^ p̂ j~0!&2u

2\v j~ n̄ j1
1
2 !

G ~12!

so that for any quantum-mechanical mean va

Oj„^ p̂ j (0)&,$^q̂ j (0)&2^X̂(0)&%…, the statistical average is

^Oj&S5E Oj„^ p̂ j~0!&,$^q̂ j~0!&

2^X̂~0!&%…Pjd^ p̂ j~0!&d$^q̂ j~0!&2^X̂~0!&%.

~13!

Here n̄ j indicates the average thermal photon number
the j th oscillator at temperatureT as defined by n̄ j
51/@exp(\vj /kBT)21#.

To proceed further we now add the force termV8(^X̂&) on
both sides of Eq.~9! and rearrange it to obtain formally

^ Ẍ̂&1V8~^X̂&!1E
0

t

b~ t2t8!^ Ẋ̂~ t8!&dt85 f ~ t !1Q~ t !,

~14!

where

Q~ t !5V8~^X̂&!2^V8~X̂!& ~15!
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represents the quantum-mechanical dispersion of the f
operatorV8(X̂) due to the system degree of freedom. Sin
Q(t) is a quantum fluctuation term Eq.~14! offers a simple
interpretation. This implies that the classical looking gen
alized quantum Langevin equation is governed by
c-number quantum noisef (t) that originates from the
quantum-mechanical heat bath characterized by the pro
ties ~11! and a quantum fluctuation termQ(t) due to the
quantum nature of the system characteristic of the nonlin
ity of the potential.Q(t) can be calculated order by order. I
Appendix A we show howQ(t) can be calculated in the
lowest order.

Summarizing the above discussions we point out that
possible to formulate a QGLE~14! of the quantum-
mechanical mean value of the coordinate of the Brown
particle in a field of potentialV(X̂), provided a classical-like
noise termf (t) due to thermal bath satisfies Eq.~11! where
the ensemble average has to be carried out with distribu
~12!. To realize f (t) as a noise term we have split up th
quantum-statistical averaginĝ¯&QS into a quantum-
mechanical mean̂̄ & by the explicit use of an initial coher
ent state representation of the bath oscillators and the
statistical averaginĝ¯&s of the quantum-mechanical mea
values with Eq.~12!. It is easy to note that the distribution o
the quantum-mechanical mean values of the bath oscilla
~12! reduces to classical Maxwell-Boltzmann distribution
the thermal limit \v j!kBT, i.e. exp†2„v j

2@^q̂ j (0)&
2^X̂(0)&#21^ p̂ j (0)&2

…/2kBT‡. Secondly, the vacuum term
in the distribution ~12! prevents the distribution function
from being singular atT50. In other words the width of
distribution remains finite even at absolute zero, which i
simple consequence of uncertainty principle.

III. THE GENERALIZED QUANTUM KRAMERS’
EQUATION

It is now convenient to rewrite the generalized Langev
equation ~14! of the Brownian particle in presence of a
external force field in the form

ẍ1V8~x!1E
0

t

b~ t2t8!ẋ~ t8!dt85 f ~ t !1Q~ t !. ~16!

where we let̂ X̂&5x for a simple notational change.b(t) is
the dissipative kernel andf (t) is the zero-centered stationar
noise due to the reservoir where

^ f ~ t !&s50, ^ f ~ t ! f ~ t8!&s5c~ ut2t8u!5c~t!. ~17!

Here c(t) is the correlation function, which in the equilib
rium state is connected to memory kernelb(t) through FDR
of the form

c~ t2t8!5
1

2 E0

`

dv k~v!r~v!\vFcoth
\v

2kBTGcosv~ t2t8!.

~18!
9-3
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BANERJEE, BAG, BANIK, AND RAY PHYSICAL REVIEW E65 021109
Equation~18! is the continuum version of Eq.~11!. r~v! is
the density of modes of the reservoir oscillators. In the c
tinuum versionb(t) is given by

b~ t2t8!5E
0

`

dv k~v!r~v!cosv~ t2t8! ~19!

In the high temperature limit (kBT@\v) one recovers the
well-known classical FDR through

c~ t2t8!5kBTb~ t2t8!. ~20!

We now proceed to the solution of Eq.~16!. One of the
essential steps in this direction is to linearize the poten
V(x) in the left-hand side of Eq.~16! around the bottom of

the well atx5x0 so thatV(x)5V(x0)1( 1
2 )v0

2(x2x0)2. v0
2

refers to the second derivative of the potentialV(x) evalu-
ated atx5x0 . This together with a Laplace transform of E
~16! leads us to the following general solution~we takex0
50 for the present section!:

x~ t !5^x~ t !&s1E
0

t

M0~ t2t! f ~t!dt, ~21!

where

^x~ t !&s5v~0!M0~ t !1x~0!xx~ t !1G0~ t ! ~22!

and

G0~ t !5E
0

t

M0~ t2t!Q0~t!dt. ~23!

xx~ t !512v0
2E

0

t

M0~t!dt ~24!

with x(0) and v(0) @equal to ẋ(0)# being the initial
quantum-mechanical mean values of the coordinate and
locity of the particle, respectively.M0(t) is the inverse form
of the Laplace transform of

M̃0~s!5
1

s21sb̃~s!1v0
2

~25!

with

b̃~s!5E
0

`

b~ t !e2stdt ~26!

is the Laplace transform of the dissipative kernelb(t). The
subscript 0 inQ0 , M0 , andG0 signifies that the correspond
ing dynamical quantities are to be calculated aroundx5x0 .
The time derivative of Eq.~21! gives

v~ t !5^v~ t !&s1E
0

t

m0~ t2t! f ~t!dt, ~27!

where

^v~ t !&s5v~0!m0~ t !2x~0!v0
2M0~ t !1g0~ t ! ~28!
02110
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m0~ t !5
d

dt
M0~ t ! and g05

d

dt
G0~ t !. ~29!

It is not difficult to check thatM0(t) andm0(t) are the two
relaxation functions;m0 measures how the system with
quantum-mechanical mean velocity forgets its initial val
while M0(t) concerns the relaxation of quantum-mechani
mean displacement.

Now using the symmetry properties of the correlati
function ^ f (t) f (t8)&s @equal toc(t2t8)5c(t82t)# and the
solution forx(t) andv(t) from Eqs.~21! and~27! we obtain
the following expressions for the variances:

sxx
2 ~ t !5^@x~ t !2^x~ t !&s#

2&s

52E
0

t

M0~ t1!dt1E
0

t1
M0~ t2!c~ t12t2!dt2 ~30a!

svv
2 ~ t !5^@v~ t !2^v~ t !&s#

2&s

52E
0

t

m0~ t1!dt1E
0

t1
m0~ t2!c~ t12t2!dt2 ~30b!

sxv
2 ~ t !5^@x~ t !2^x~ t !&s#@v~ t !2^v~ t !&s#&s5

1
2 ṡxx~ t !

5E
0

t

M0~ t1!dt1E
0

t1
m0~ t2!c~ t12t2!dt2 . ~30c!

The expressions for variances are general and valid
arbitrary temperature and friction and includes quantum
fects. To recover classical limit of the variance
sxv

2 (t),svv
2 (t),sxv

2 (t) one has to use Eq.~20! instead of Eq.
~18! in Eqs. ~30a!–~30c!. It must also be emphasized th
Eqs.~30a!–~30c! are the expressions for statistical varianc
of the quantum-mechanical mean valuesx(t) andv(t) with
distribution~12!. These are not to be confused with standa
quantum-mechanical variances, which are connected thro
the uncertainty relation.

Having obtained the expressions for statistical avera
and variances we are now in a position to write down
quantum Kramers equation, which is a Fokker-Planck
scription for the evolution of true probability density func
tion p(x,v,t) of the quantum-mechanical mean values of t
co-ordinate and momentum of the particle. To this end i
necessary to consider the statistical distribution of noisef (t),
which we assume here to be Gaussian. For Gaussian n
processes we define@25,31,34# the joint characteristic func-
tion p̄(m,r,t) in terms of the standard mean values and va
ances

p̃~m,p,t !5exp@ im^x~ t !&s1 ir^v~ t !&s2
1
2 $sxx

2 m212sxv
2 rm

1svv
2 r2%# ~31!

Using standard procedure@24,25,31,34# we write down
the quantum Kramers’ equation obeyed by the joint proba
9-4
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APPROACH TO QUANTUM KRAMERS’ EQUATION AND . . . PHYSICAL REVIEW E65 021109
ity distribution p(x,v,t), which is the inverse Fourier trans
form of the characteristic function

]p~x,v,t !

]t
5H 2v

]

]x
1Ṽ8~x!

]

]v
1@V0~ t !

2N0~ t !!
]

]vJ p~x,v,t !1H g0~ t !
]

]x
1g̃0~ t !

]

]v
v

1f0~ t !
]2

]v2 1c0~ t !
]2

]v]xJ p~x,v,t !, ~32!

where

g0~ t !5Ġ0~ t !, ~33a!

g̃0~ t !52
d

dt
@ ln Y0~ t !#, ~33b!

Y0~ t !5
m0~ t !

v0
2 F12v0

2E
0

t

M0~t!dtG1M0
2~ t !, ~33c!

ṽ0
2~ t !5

1

Y0~ t !
@2M0~ t !ṁ0~ t !1m0

2~ t !#, ~33d!

N0~ t !5
1

Y0~ t ! F2g0~ t !ṁ0

1

v0
2 S 12v0

2E
0

t

M0~ t !dt D
1m0

2G0G ~33e!

V0~ t !5M0~ t !
d

dt
@G0~ t !m0~ t !# ~33f!

f0~ t !5ṽ0
2~ t !sxv

2 ~ t !1g̃0~ t !svv
2 ~ t !1 1

2 ṡvv
2 ~ t ! ~33g!

c0~ t !5ṡxv
2 ~ t !1g̃0~ t !sxv

2 ~ t !1ṽ0
2~ t !sxx

2 ~ t !2svv
2 ~ t !.

~33h!

Ṽ(x) is the renormalized potential linearized at the b
tom of the well atx50, the frequency beingṽ0(t) as given
by Eq. ~33d!. The above Kramers’ equation~32! is the
quantum-mechanical version of the classical non-Markov
Kramers equation and is valid for arbitrary temperature a
friction. The quantum effects appear in the description in t
different ways. First, due to the explicitQ dependenceg0(t)
@see Eqs.~23! and ~33a!#, V0(t) and N0(t) manifestly in-
clude the effect of quantum dispersion of the system thro
the nonlinearity of the potential. Second, the quantum dif
sion coefficientsf0(t) and c0(t) are due to the quantum
mechanical heat reservoir. In the classical lim
g0(t),V0(t),N0(t) vanishes whileḟ0(t) andc0(t) reduce to
the forms that can be obtained by using the class
fluctuation-dissipation relation~20! in Eq. ~30! and Eqs.
~33g! and ~33h!. In the classical limitkBT@\v Eq. ~32!
therefore reduces exactly to non-Markovian Kramers’ eq
tion derived earlier by Adelman and Mazo in late 197
@24,25#.
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It is important to emphasize that Eq.~32! retains its full
validity in the quantum limit whenT→0. It is also apparent
thatG0 in Eq. ~23! @therefore ing0(t)# demonstrates a direc
convolution of the relaxation functionM0(t) with quantum
dispersionQ0(t). This is a clear signature of the interplay o
dissipation with the nonlinearity of the potential within
quantum description.

The decisive advantage of the present approach is n
worthy. We have mapped the operator generalized Lange
equation~3! into a generalized equation forc numbers~16!
and a corresponding non-Markovian Kramers’ equation~32!.
The present approach thus bypasses the earlier method
quasiprobability distribution functions employed widely
quantum optics over the decades in a number of ways. F
unlike the quasiprobabilitydistribution function, the prob-
ability distribution function p(x,v,t) is valid for non-
Markovian processes. Second, while the corresponding c
acteristic functions for probability distribution functions a
operators, we make use of the classical characteristic fu
tions. Third, as pointed out earlier the quasidistribution fun
tions often become negative or singular in the strong qu
tum domain and pose serious problems@15,32#. The present
approach is free from such shortcomings sincep(x,v,t) is a
true probability distribution function rather than aqua-
siprobability function @28,29#. Fourth, the generalized quan
tum Kramers’ equation derived here is valid for arbitra
temperature and friction.

Regarding quantum generalized Kramers’ equation
further note that although bounded, the time dependent fu
tions g̃0(t),f0(t),c0(t) may not always provide the long
time limits. This is well known in classical theories@24,25#.
These play an important role in the calculation of no
Markovian Kramers’ rate. Therefore, in general, one has
work out the frequencyṽ0(t) and friction g̃0(t) functions
for the analytically tractable models. In Sec. V we shall co
sider one such explicit example.

We now consider the stationary distribution of the pa
ticles nearx50 that can be expressed as a solution of E
~32! for ]pst

0 /]t50

H v
]

]x
2g0~`!

]

]x
2ṽ0

2~`!x
]

]v
2@V0~`!

2N0~`!#
]

]vJ pst
0 ~x,v !2H g̃0~`!

]

]v
v1f0~`!

]2

]v2

1c0~`!
]2

]v]xJ pst
0 ~x,v !50. ~34!

where the drift and diffusion coefficients of Eq.~34! assume
their asymptotic values.

It may be checked immediately that the stationary so
tion of Eq. ~34! is given by

pst
0 ~x,v !5

1

Z
expF2

~v2g0!2

2D0
G

3expF2
Ṽ~x!1x~V02N01g̃0g0!

D01c0
G . ~35!
9-5
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whereD05f0(`)/g̃0(`); c0 , f0 , V0 , N0 andg0 are the
values of the corresponding quantities in the long time lim
Z is the normalization constant. HereṼ(x) is the renormal-
ized linear potential with a renormalization in its frequenc

Equation~35! is the quantum steady state distribution.
may be checked easily that in the classical Markovian li
the ratioD0 goes over tokBT while c0 vanishes along with
g0 ,V0 ,N0 reducing Eq. ~35! to the form of Maxwell-
Boltzmann distribution function. In what follows in the ne
section we shall make use of the quantum distribution~35! as
a boundary condition for calculation of Kramers’ rate.

IV. THE QUANTUM KRAMERS’ RATE

We now turn to the problem of barrier crossing dynami
In Kramers’ approach the particle coordinatex ~which in our
case it is the quantum-mechanical mean position! corre-
sponds to the reaction co-ordinate and its values at
minima of V(x) denotes the reactant and the product sta
separated by a finite barrier, the top being a metastable
representing the transition state.

Linearizing the motion around the barrier top atx5xb the
Langevin equation can be written down as

ẍ2vb
2~x2xb!1E

0

t

b~ t2t8!ẋ~ t8!dt85 f ~ t !1Qb~ t !,

~36!

where the barrier frequencyvb
2 is defined byV(x)5V(xb)

2( 1
2 )vb

2(x2xb)2. Also the quantum dispersionQb has to be
calculated at the barrier top. Correspondingly the motion
the quantum particle is governed by the Fokker-Planck eq
tion

]p~x,v,t !

]t
52H v

]

]x
2gb~ t !

]

]x
1ṽb

2~x2xb!
]

]v
2@Vb~ t !

2Nb~ t !#
]

]vJ p~x,v,t !1H g̃b~ t !
]

]v
v

1fb~ t !
]2

]v2 1cb~ t !
]2

]v]xJ p~x,v,t !. ~37!

where the subscript ‘b’ indicates that all the coefficients ar
to be calculated at the barrier top using the general defini
of the last section where

M̃b~s!5
1

s21sb̄~s!2vb
2

, ~38!

which is the Laplace transform ofMb(t) and

xx
b~ t !511vb

2E
0

t

Mb~ t8!dtt . ~39a!

Furthermore we have

mb5Ṁb and gb~ t !5Ġb~ t !; ~39b!
02110
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g̃b~ t !52
d

dt
@ ln Yb~ t !#, ~40a!

Yb~ t !5
mb~ t !

vb
2 F11vb

2E
0

t

Mb~t!drG1Mb
2~ t !, ~40b!

ṽb
2~ t !5

1

Yb~ t !
@2Mb~ t !ṁb~ t !1mb

2~ t !#, ~40c!

Nb~ t !5
1

Yb~ t ! Fgb~ t !ṁb

1

vb
2 S 11vb

2E
0

t

Mb~t!dt D
1mb

2GbG , ~40d!

Vb~ t !5Mb~ t !
d

dt
@Gb~ t !mb~ t !#, ~40e!

fb~ t !5ṽb
2~ t !sxv

2 ~ t !1g̃0~ t !svv
2 ~ t !1 1

2 ṡvv
2 ~ t !, ~40f!

cb~ t !5ṡxv
2 ~ t !1g̃b~ t !sxv

2 ~ t !1ṽb
2~ t !sxx

2 ~ t !2svv
2 ~ t !,

~40g!

In the spirit of classical Kramers’ ansatz@1# we now de-
mand a solution of Eq.~37! at the stationary limit of the type

pst~x,v !5p0~x,v !z~x,v ! , ~41!

with

p0~x,v !5expF2
~v2gb!2

2Db
2

Ṽ~x!1x~Vb2Nb1g̃bgb!

Db1cb
G

~42!

whereDb5fb(`)/g̃b(`); cb , gb , Nb , g̃b are the long time
limits of the corresponding time dependent quantities s
cific for the barrier region. The exponential factor in Eq.~41!
is not the Boltzmann distribution but pertains to the dyna
ics at the barrier top atx5xb . Due to the presence ofgb ,
Vb , Nb one may easily comprehend the signature of qu
tum nature of the system whilefb , cb carries the effect of
quantum noise due to heat bath. The distributionp0 remains
finite even at absolute zero.

Now inserting Eq.~41!, in Eq. ~37! in the steady state we
obtain

2S 11
cb

Db
D ~v2gb!

]z

]x
2F Db

cb1Db
ṽb

2

3S x2xb2
~Vb2Nb!2g̃bgb

ṽb
2 D 1g̃b~v2gb!G ]z

]v

1fb

]2z

]v2 1cb

]2z

]x]v
50. ~43!

We then set

u5a~x1ab!1v2gb , ~44!
9-6
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where

ab52FVb2Nb1g̃bgb1xbṽb

ṽb
2 G . ~45!

and with the help of transformation~44! Eq. ~43! is reduced
to the following form:

~fb1acb!
]2z

]u22F Db

cb1Db
ṽb

2~x1ab!1H g̃b1aS 11
cb

Db
D J

3~v2gb!G ]z

]u
50. ~46!

Now let

Db

cb1Db
ṽb

2~x1ab!1H g̃b1aS 11
cb

Db
D J ~v2gb!5lu,

~47!

wherel is a constant to be determined.
From Eqs.~44! and ~47! we obtain

a652
B

2A
6A~B2/4A!1~C/A!, ~48!

where

A511
cb

Db
, B5g̃b , and C5

Db

cb1Db
2ṽb

2 ~49!

By virtue of the relation~47!, Eq. ~46! becomes

d2z

du2 1Lu
dz

du
50, ~50!

where

L5F l

fb1acb
G . ~51!

The general solution of the homogeneous differen
equation~50! is

z~u!5F2E
0

u

expS 2
Lu2

2 Ddu1F1 ~52!

whereF1 andF2 are the two constants of integration.
The integral in Eq.~52! converges foruuu→` if only L is

positive. The positivity ofL depends on the sign ofa; so by
virtue of Eqs.~44! and~47! we find that the negative root o
a. i.e., a guarantees the positivity ofL since2la5C. To
determine the value ofF1 andF2 we impose the first bound
ary condition onz

z~x,v !→0 as x→` for all v. ~53!

This condition yields

F15F2S p

2L D 1/2

~54!
02110
l

By insertion of Eq.~54! in Eq. ~52! we obtain

z~u!5F2F S p

2L D 1/2

1E
0

u

c2~L2/2!duG . ~55!

Since we are to calculate the current at the barrier top,
expand the renormalized potentialṼ(x) aroundx5xb

Ṽ~x!5 ṽ~xb!2 1
2 ṽb

2~x2xb!2. ~56!

Thus with the help of Eqs.~55! and~56! Eq. ~41! becomes

pst~x5xb ,v !5F2 expS 2
Ṽ~xb!1xb~Vb2Nb1gbg̃b!

Db1cb
D

3F S p

2L D 1/2

expS 2
~v2gb!2

2Db
D1F~x5xb ,v !

3expS 2
~v2gb!2

2Db
D G ~57!

with

F~x,v !5E
0

u

e2~L2/2!du. ~58!

We now, define the steady state currentj across the barrier
as

j 5E
2`

1`

vpst~x5xb ,v !dv. ~59!

An explicit evaluation of the integral using Eq.~57! yields
the expression for currentj at the barrier by

j 5F2FDbS 2pDb

~11Db! D
1/2

expH 2
La2~ab1xb!2

2~11LDb! J
1gbH S p

2L D 1/2

A2Dbp1I J G
3expH 2

Ṽ~xb!1xb~Vb2Nb1gbg̃b!

Db1cb
J , ~60!

where

I 5E
2`

1`

F~x5xb ,v !expF2
~v2gb!2

2Db
Gdv. ~61!

Having obtained the stationary current at the barrier
we now determine the constantF2 in Eq. ~60! in terms of the
population of the left well aroundx5x0 . This may be done
by matching the two appropriately reduced probability d
tributions at the bottom of the left well.

To this end we return to Eq.~41!, which describes the
steady state distribution at the barrier top. With the help
Eq. ~55! we write
9-7
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pst~x,v !5F2 expF2
Ṽ~x!1x~Vb2Nb1gbg̃b!

Db1cb
G

3expF2
~v2gb!2

2Db
GF S p

2L D 1/2

1E
0

u

expS 2
Lu2

2 DduG . ~62!

We first note that asx→`, u→` the preexponential fac
tor in pst(x,v) reduces to the form

F2@¯#5F2S 2p

L D 1/2

. ~63!

We now define a reduced distribution function inx as

p̃st~x!5E
2`

1`

pst~x,v !dv. ~64!

Hence from Eqs.~63! and ~64! we obtain

p̃st~x!52pF2S Db

L D 1/2

expF2
Ṽ~x!1x~Vb2Nb1gbg̃b!

Db1cb
G .

~65!

Similarly we derive the reduced distribution function
the left well aroundx5x0 using Eq.~35! as ~x0 may be put
zero without any loss of generality!

p̃st
0 ~x0!5

1

Z
A2pD0 expF2

Ṽ~x0!1x0~V02N01g0g̃0!

D01c0
G ,

~66!

where we have employed the expansion ofṼ(x) as Ṽ(x)

5Ṽ(x0)1( 1
2 )ṽ0

2(x2x0)2 and Z is the normalization con-
stant.

We impose the second boundary condition that atx5x0
the reduced distribution~65! must coincide with Eq.~66! at
the bottom of the left well i.e.,

p̃st~x0!5 p̃st
0 ~x0!. ~67!

The above condition is used to determineF2 in terms of
normalization constantZ of Eq. ~35!

F25
1

Z
S L

2p
D 1/2S D0

Db
D 1/2

3expF2
Ṽ~x0!1x0~V02N01g0g̃0!

D01c0
G

3expF Ṽ~xb!2 1
2 ṽb

2~x02xb!21x0~Vb2Nb1gbg̃b!

Db1cb
G .

~68!
02110
Furthermore by explicit evaluation of the normalizatio
constant using the integral

E
2`

1`E
2`

1`

pst
0 ~x,v !dx dv51, ~69!

wherepst
0 (x,v) is given by Eq.~35!. We obtain

Z5
2p

ṽ0
D0

1/2~D01c0!1/2expF @V02N01g0g̃0#2

2~D01c0!ṽ0
2 G

3expF2
Ṽ~x0!1x0~V02N01g0g̃0!

D01c0
G . ~70!

Making use of Eq.~70! in Eq. ~68! we obtain from Eq.~60!
the final expression for quantum Kramers’ rate, based
flux-over-population method@2,33#, as

k5
ṽ0

2p S L

2p D 1/2 1

Db
1/2~D01c0!1/2expS 2

@V02N01g0g̃0#2

2~D01c0!ṽ0
2 D

3H DbS 2pDb

11LDb
D 1/2

expS 2
La2~Vb2Nb1gbg̃b!2

2~11LDb!ṽb
4 D

1gbF S p

2L D 1/2

A2pDb1I G J
3expS 2

E1~Vb2Nb1gbg̃b!~A2E/ṽb!

Db1cb
D , ~71!

where we have used the relation~56! to obtain Ṽ(x0)
5Ṽ(xb)2( 1

2 )ṽb
2(x02xb)2 and definition of activation en-

ergy asE5Ṽ(xb)2Ṽ(x0).
A close look into the definitions~39a!, ~40d!, and~40e! of

V, N, andg in the exponential factors in Eq.~71! reveals that
each of them is proportional to the anharmonic correct
term of the potential,V-(x) in the leading order so tha
@V02N01g0g̃0#2/ṽ0

2;@V-(x)#2/@V9(x)#, @Vb2Nb

1gbg̃b#2/ṽb
4;@V-(x)#2/@V9(x)#2, whereas @Vb2Nb

1gbḡb#/ṽb;@V-(x)#/A@V9(x)#. The last ratio being the
dominant contribution the expression~71! then can be sim-
plified as~V vanishes in the long time limit!

k5
ṽ0

2p S L

2p D 1/2 1

Db
1/2~D01c0!1/2 H DbS 2pDb

11LDb
D 1/2

1gbF S p

2L D 1/2

A2pDb1I G J
3expS ~Nb2qbg̃b!A2E

vb~Db1cb!
D expS 2

E

Db1cb
D . ~72!

The above expression is the quantum Kramers’ ra
which is a direct generalization of classical non-Markovi
rate valid for intermediate to strong damping regime and
arbitrary decaying correlation function and temperature. T
derived rate thus includes the effect of tunneling in a natu
way to modify the classical rate.

To recover the classical non-Markovian expression fr
Eq. ~71! one has to take into consideration~i! the system
concerned quantum correction due to nonlinearity, i.e.,Nb
9-8
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APPROACH TO QUANTUM KRAMERS’ EQUATION AND . . . PHYSICAL REVIEW E65 021109
andgb must vanish;~ii ! the heat bath noise related quantitie
e.g.,D andc are to be calculated from the expressions of
variances~30! usingc(t2t8) in the classical limit, i.e., Eq.
~20!. Under these two conditions, Eq.~71! is reduced to the
classical expression

k5
ṽ0

2p S Lc

11LcDb
cD 1/2 Db

c

~D0
c1c0

c!1/2expS 2
E

Db
c1cb

cD ,

~73!

where the superscript ‘‘c’’ signifies the classical limit of the
quantum-mechanical quantities, such asD0(Db) and
c0(cb). The above expression is identical in form to the o
derived for classical non-Markovian dynamics@13,14,26#.

V. A SPECIFIC EXAMPLE: EXPONENTIALLY
CORRELATED MEMORY KERNEL

The structure ofb(t) given in Eq.~19! suggests that it is
quite general and a further calculation requires a p
knowledge of the density of modesr~v! of the heat bath
oscillators. As a specific case we consider in the continu
limit

k~v!r~v!5
2

p

G

~11v2tc
2!

~74!

so thatb(t) takes the well known form of an exponential
correlated memory kernel@34#

b~ t !5
G

tc
expF2

utu
tc

G , ~75!

whereG is the damping constant andtc refers to the corre-
lation time of the noise. Once we get an explicit express
for b(t) and its Laplace transformb̃(s)5G/(11stc), it is
possible to make use of Eq.~25! to calculateM̃ (s) and the
relaxation functionM (t), which for the present case ar
given by @34#

M̃0~s!5
s1a0

s31a0s21b01c0
~76!

with

a05
1

tc
, b05v0

21
G

tc
, c05

v0
2

tc

and

M0~ t !5c1
0e2p0t1c2

0e2q0t sin~et1a0!, ~77!

respectively, where

p052A02B01
a0

3
, q05 1

2 ~A01B0!1
a0

3
,

c5
)

2
~A02B0!, c1

05
1

2q02p02d0
,

02110
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d05
a0~2q02p0!2q022e2

a02p0 ,

A05S 2a0
3

27
1

a0b0

6
2

c0

2
1AR0D 1/3

,

B05S 2
a0

3

27
1

a0b0

6
2

c0

2
2AR0D 1/3

,

c2
052

c1
0

e
@~d02q0!21e#1/2,

and

a05tan21S e

d02q0D ~78!

and

R052
a0

2b0
2

108
1

b0
3

27
1

a0
3c0

27
2

a0b0c0

6
1

c0
2

4
.0

for the present problem.
Now making use of the expression~77! for M (t) and

expression~18! for correlation functionc(t) in Eqs. ~30a!–
~30c! we calculate explicitly, after a tedious long but straig
forward algebra, the time dependent expressions for the v
ances of the quantum-mechanical mean values of the p
tion and momentum of the particle. These expressions
given by

sxx
2 ~ t !5

2hG

p E
0

` v

11v2tc
2 S coth

\v

2kbTDFx~v,t !dv

svv
2 ~ t !5

2\G

p E
0

` v

11v2tc
2 S coth

\v

2kbTDFv~v,t !dv

and

sxv
2 ~ t !5 1

2 ṡxx
2 ~ t !.

In Appendix B we provide the explicit structures o
Fx(v,t) andFv(v,t). Since in the long time limitsxv

2 , ṡxv
2 ,

ṡvv
2 vanish, the calculation of the quantitiesD0 , Db , c0 , cb

essentially rest on the asymptotic values ofsxx
2 (t) and

svv
2 (t) evaluated at the barrier top or the bottom of the we

It must be emphasized that the quantities are nonvanishin
T50 due to quantum fluctuation of the heat bath.

We now turn to the calculation of the relevant asympto
coefficientsgb andNb in the expression for the rate~V0 and
Vb vanish in the long time limit due to the relaxation fun
tion!. Both of them are related to the convolution integr
through the relations~40d! andgb5Ġb . SinceGb is defined
as *0

t Mb(t2t)Qb(t)dt, where Mb and Qb correspond to
the barrier top~andM0 andQ0 to the bottom of the potentia
well!, we make use of the expressions forMb andM0 along
with those forQb andQ0 as shown in Appendix A to obtain
G0(t) and Gb(t) and their asymptotic values. Considerin
9-9
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BANERJEE, BAG, BANIK, AND RAY PHYSICAL REVIEW E65 021109
only the short time linearity ofGb(t) ~since the quantum
effect in Qb(t) has been taken into account for the lowe
order in the Appendix A! calculation ofgb is quite straight
forward. Furthermore the expression forNb as given by Eq.
~40d! can be simplified in the asymptotic limit to obtain

Nb~ t !5
Ṁb

2Gb~ t !

Mb
2 .

Both gb and Nb involve the constantŝ dX̂2& t50 and

^dX̂d P̂1d P̂dX̂& t50 , which are assumed to be\/(2vb)
~minimum uncertainty state! and zero, respectively, for th
present calculation.

To analyze the associated non-Markovian nature of
dynamics at various temperatures it is necessary to go
to numerical simulation of stationary values ofD0 , Db and
c0 , cb , and L. These in turn, are primarily dependent
sxx

2 (t) andsvv
2 (t), the other variances being vanishing in t

long time limit. For the present purpose we assume the s
plest form of the cubic potential of the typeV(x)5

2(1/3)Āx31B̄x2, where the parameter set used isĀ50.5;
B̄5@(3/4)Ā2E#1/3; the activation energyE5V(xb)2V(x0)
510. The correlation time of the noisetc is fixed at 0.3. The
temperature and the damping constantG are varied set to set
The quantitiesgb and Nb , which incorporate quantum ef
fects through the anharmonicity of the potential, can be e
ily calculated numerically as outlined in the previous pa
graph. In Fig. 1 we show the Arrhenius plot, i.e., t
variation of lnk vs 1/T for two different values of damping
constantG. It is apparent that in the high temperature regim
the plot exhibits linearity, which is the standard Arrheni
classic result. In the low temperature regime, however,
observes a much slower variation that is a typical quan
behavior. To single out this low temperature behavior,
show in the inset of Fig. 1 a clearT2 dependence of the
rate—a feature observed earlier in the recent past@2#. In
Figs. 2~a!–~c! we exhibit the variation of the ratek as a

FIG. 1. Plot of lnk vs 1/T using Eq.~72! for different values of
the damping contant~a! G51.3, and~b! G51.7 @Inset: Plot ofk vs
T illustrate theT2 dependence at very low temperature. The para
eters are same as in the main figure# ~units arbitrary!.
02110
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function of the damping constantG at several temperatures
It is apparent that at a relatively high temperature the r
varies inversely with the damping constant while at low te
perature the rate drops at a much faster rate. AtT50 the
decay is exponential in nature. The quantum rate in this s
ation essentially corresponds to zero-temperature tunne
This result is in satisfactory agreement with that of Calde
and Leggett@20#. The present theory, therefore, unifies t

-

FIG. 2. Plot of quantum Kramers’ ratek vs T using Eq.~72! for
~a! T55.0, ~b! T53.0, and~c! T50.0 ~units arbitrary!.
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APPROACH TO QUANTUM KRAMERS’ EQUATION AND . . . PHYSICAL REVIEW E65 021109
aspects of quantum tunneling and thermal noise-induced
rier crossing on the same footing.

VI. CONCLUSIONS

In this paper we have proposed a simple approach to n
Markovian theory of quantum Brownian motion in pha
space. Based on an initial coherent state representatio
bath oscillators and a canonical equilibrium distribution
quantum-mechanical mean values and their coordinates
momenta, we have shown that it is possible to realize a
chastic differential equation inc numbers in the form of a
generalized Langevin equation and the associated Fok
Planck equation that can be recognized as a genera
quantum Kramers’ equation. The Kramers’ equation is th
employed to derive the rate of barrier crossing that inclu
both tunneling and thermal induced effects on the same f
ing. The main conclusions in this study are the following

~i! Our ensemble averaging procedure and the QGLE
amenable to theoretical analysis in terms of the methods
veloped earlier for the treatment of classical non-Markov
theory of Brownian motion.

~ii ! The proposed Kramers’ equation is an exact quan
analog of classical generalized Kramers’ equation deri
earlier in late 1970s by a number of workers. Since we h
dealt here withtrue probability functionsthe theory is free
from the problem of singularity or negativity ofquasiclassi-
cal distribution functions, which is often encountered
Wigner equation approaches. The equation is valid for a
trary temperature and friction.

~iii ! The realization of noise as a classical looking ent
which satisfies quantum fluctuation-dissipation relation,
lows ourselves to envisage quantum Brownian motion a
quantum generalization of its classical counterpart. T
method is based on the canonical quantization procedure
is independent of the path integral formalisms.

~iv! The quantum Kramers’ rate@Eq. ~71!# is valid for
intermediate to strong damping regime and for arbitrary te
perature and decaying noise correlations. It reduces to c
sical non-Markovian rate and purely vacuum fluctuatio
induced rate or tunneling in the appropriate limits.

~v! The theory incorporates quantum effects in two diffe
ent ways. The quantum nature of the system is manife
through the nonlinear part of the potential while the heat b
imparts the usual quantum noise. It must be emphasized
our general analysis takes into consideration the quan
effects of all orders.

~vi! The theory also reveals an interesting interplay of
nonlinearity and dissipation in the Fokker-Planck coefficie
that include quantum corrections. The variation of the r
due to tunneling and activation with respect to the tempe
ture and damping has been clearly demonstrated.

The theory presented here is a natural extension of
classical theory of Brownian motion in the sense that
quantum Kramers’ equation isclassical-looking in form but
quantum-mechanical in its content. Also we have considered
only the spatial diffusion-limited regime in the calculation
the rate. It is worthwhile to extend the approach to the ene
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diffusion regime and further to implement other methods
the treatment of classical Brownian motion.
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APPENDIX A: CALCULATION OF QUANTUM
DISPERSION Q

The quantum fluctuationQ is defined in Eq.~15! as

Q~ t !5V8~^X̂&!2^V8~X̂!&. ~A1!

So far as the general formulation of the theory upto S
IV is concernedQ is taken in full. Or in other words the
quantum Kramers’ equation~32! or the rate Eq.~71! incor-
porates quantum effects due to the system in all orders. H
ever, in actual calculationsQ has to be estimated order b
order@35#. To this end we consider the lowest order quantu
corrections. Returning to the quantum mechanics of the s
tem in Heisenberg picture, it is convenient to write the o
eratorsX̂ and P̂ as

X̂~ t !5^X̂~ t !&1dX̂,

P̂~ t !5^P̂~ t !&1d P̂, ~A2!

where ^X̂(t)& and ^P̂(t)& are the quantities signifying
quantum-mechanical averages anddX̂ andd P̂ are quantum
corrections. By construction̂dX̂& and^d P̂& are zero anddX̂

andd P̂ obey the commutation relation@dX̂,d P̂#5 ih. Using
Eq. ~A2! in ^V8(X̂)& and a Taylor expansion around^X̂& it is
possible to expressQ(t) as ~keeping the lowest order non
vanishing term!

Q~ t !52
1

2
V-~^X̂&!^dX̂2~ t !& ~A3!

where^X̂& and ^dX̂2& follow a coupled set of equations a
given below

^ Ẋ̂&5^P̂&,

^ Ṗ̂&52V8~^X̂&!,

d

dt
^dX̂2&5^dX̂d P̂1d P̂dX̂&,

d

dt
^dX̂d P̂1d P̂dX̂&52^d P̂2&2V9~^X̂&!^dX̂2&

d

dt
^d P̂2&52V9~^X̂!&~dX̂d P̂1d P̂dX̂& ~A4!

The above set of equations can be derived from Heis
berg’s equation of motion. In the Kramers’ problem one
9-11
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primarily concerned with the local dynamics of the syste
around the barrier top at̂X̂&(5x)5xb or at the bottom at

^X̂&(5x)5x0 . The solution depends critically on the natu
of the curvature of the potential, i.e.,V9(^X&). Considering
the local nature of the dynamics we have expressedV9(x
5xb)52vb

2 and V9(x5x0)5v0
2 and consequently the

equations for the quantum corrections can be solved in
pendently of the first two of Eqs.~A4!. A solution of ^dX̂2&
aroundx5x0 , which is an elliptic fixed point is therefore
given by

^dX̂2~ t !&x;x0
5 1

2 F ^dX̂2& t502
^d P̂2& t50

v0
2 Gcos~2v0t !

1
^dX̂d P̂1d P̂dX& t50

2v0
sin~2v0t !1

2I 0
c

4v0
2 ,

~A5!

where I 0
c is an integration constant and is given byI 0

c

5^d P̂2& t501v0
2^dX2& t50 . Therefore, the quantum dispe

sion at the bottom of the well is given by

Q0~ t !52 1
2 V-~x0!^dX̂2~ t !&x;x0

, ~A6!

where^dX̂2(t)&x;x0
is governed by Eq.~A5!. Similarly we

calculate quantum fluctuationQb(t) near the top of the po
tential barrier atx5xb as

Qb~ t !52 1
2 V-~xb!^dX̂2~ t !&x;xb

, ~A7!

where^dX̂2(t)&x;xb
in a solution of the last three equation

of Eqs.~A4! aroundx;xb and is given by

^dX̂2~ t !&x;xb
5^dX̂2& t50cosh~2vbt !

1
^dX̂d P̂1d P̂dX̂& t50

2vb
sinh~2vbt ! ~A8!

It is interesting to note the hyperbolic nature of the top
the barrier that is reflected in the exponential divergence
the quantum fluctuations. This point has been studied ex
sively in the recent literature in the context of chaos@36–39#.
Having evaluated the quantum dispersionsQ0(t) andQb(t),
we are now in a position to calculate several related qua
ties such asG(t), N(t), V(t), andg(t). A better estimate of
the quantum correctionQ can be obtained from the solution
of the equations of higher order corrections derived ear
by Sundaram and Milonni@35#.

APPENDIX B: CALCULATION OF FX„v,T… AND FV„v,T…

The expressionsFx(v,t) andFv(v,t) are given by

Fx~v,t !5E
0

t

M0~ t1!@c1
0I 1~ t1!1c2

0I 2~ t1!#dt1 ~B1!
02110
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Fv~v,t !5E
0

t

N0~ t1!@p0c1
0I 1~ t1!1q0c2

0I 2~ t1!

2c2
0eI 3~ t1!#dt1 , ~B2!

where

N0~ t !5c1
0p0e2p0t1c2

0q0e2q0t sin~et1a!2c2
0ee2q0t

3cos~et1a!. ~B3!

Here I 1 , I 2 , andI 3 are given by the following expressions

I 152B2 je
2pt11B2 j cosv j t11B1 j sinv j t1 , ~B4!

I 25 1
2 @2B4 j cos~v j t11a!1B4 je

2qt1 cos~v j t11a!

3cos~v j 2t1!1B6 je
2qt1 cos~v j t11a!3sin~v j 2t1!

6B6 j sin~v j t11a!2B6 je
2qt1 sin~v j t11a!

3cos~v j 2t1!1B4 je
2qt13sin~v j t11a!sin~v j 2t1!

1B3 j cos~v j t12a!2B3 je
2qt1 cos~v j t12a!

3cos~v j 1t1!2B5 je
2qt1 cos~v j t12a!sin~v j 1t1!

1B5 j sin~v j t12a!2B5 je
2qt1 sin~v j t12a!

3cos~v j 1t1!1B3 je
2qt1 sin~v j t12a!sin~v j 1t1!#,

~B5!

I 35 1
2 @B6 j cos~v j t11a!2B6 je

2qt1 cos~v j t11a!

3cos~v j 2t1!1B4 je
2qt1 cos~v j t11a!

3sinv j 2t11B4 j sin~v j t11a!

2B4 je
2qt1 sin~v j t11a!cos~v j 2t1!2B6 je

2qt1

3sin~v j t11a!sin~v j 2t1!1B5 j

3cos~v j t12a!2B5 je
2qt1 cos~v j t12a!3cos~v j 1t1!

1B3 je
2qt1 cos~v j t12a!sin~v j 1t1!1B3 j sin~v j t12a!

2B3 je
2qt13sin~v j t12a!cos~v j 1t1!

2B5 je
2qt1 sin~v j t12a!sin~v j 1t1!#, ~B6!

where

v j 15v j1a, v j 25v j2a,

B1 j5
v j

p21v j
2 , B2 j5

p

p21v j
2 ,

B3 j5
v j 1

q21v j 1
2 , B4 j5

v j 2

q21v j 2
2 ,

B5 j5
q

q21v j 1
2 , B6 j5

q

q21v j 2
2 .
9-12
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