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We have presented a simple approach to quantum theory of Brownian motion and barrier crossing dynamics.
Based on an initial coherent state representation of bath oscillators and an equilibrium canonical distribution of
guantum-mechanical mean values of their co-ordinates and momenta we have derivaahlzer generalized
guantum Langevin equation. The approach allows us to implement the method of classical non-Markovian
Brownian motion to realize an exact generalized non-Markovian quantum Kramers’ equation. The equation is
valid for arbitrary temperature and friction. We have solved this equation in the spatial diffusion-limited regime
to derive quantum Kramers’ rate of barrier crossing and analyze its variation as a function of the temperature
and friction. While almost all the earlier theories rest on quasiprobability distribution fundiogs Wigner
function) and path integral methods, the present work is basetduenprobability distribution functionand is
independent of path integral techniques. The theory is a natural extension of the classical theory to quantum
domain and provides a unified description of thermally activated processes and tunneling.
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I. INTRODUCTION Brownian motion essentially rests on the method of func-
tional integralg[20]. This is based on the calculation of the
Ever since Kramergl] reported his seminal work on the partition function for the Hamiltonian of the system coupled
Brownian motion in phase space, the theory of noise-inducetb its environment and a noncanonical quantization proce-
escape from metastable states has become a central issuediure. The classical theories on the other hand rely on the
several areas of physical and chemical sciences. The escapartial differential equations describing the evolution of the
is governed by Brownian motion in addition to the charac-probability distribution functions of the system both in the
teristic dynamical motion of the system in presence of a poMarkovian and non-Markovian regiongl,3,24—27. The
tential V(X), Brownian motion being due to the thermal methods of the classical and the quantum theories are thus
forces, which in turn are associated with the dissipatiorwidely different in their approaches. The question is whether
through fluctuation-dissipation relation at a finite tempera-there is any natural extension of the classical theory to the
ture T. The problem and many of its variants have beenquantum domain. For example, one might ask what is the
addressed by a large number of workers over the last severglantum analog of the classical Kramers’ equation or Smolu-
decades at various levels of description and have been exhowskii's equation? Is it possible to generalize Kramers’
tended to semiclassical and quantum domfinsi4. Ama-  method of treatment of barrier crossing dynamics within a
jor impetus in the development of quantum theory of dissi-quantum-mechanical framework so that the usual classical
pative processes was the discovery of laser in 1960thermal activated process and quantum tunneling can be de-
followed by significant advancement in the field of nonlinearscribed within an unified scheme?
and quantum optics in 1970s and 1980s when the extensive We intend to address these issues in the present paper.
applications of nonequilibrium quantum-statistical methodsSpecifically our object is twofold.
were maddg 15,1€. Various nonlinear optical processes and (1) Our primary aim here is to developguantum analog
phenomena were described with the help of operator Langesf classical non-Markovian Kramers’' equatiomhich de-
vin equations, density operator methods, and the associatedribes quantum Brownian motion of a particle in a force
quasiclassical distribution functions. However, these dynamifield at an arbitrary temperature and coupling in termsué
cal semigroup methods of quantum optics could not gairprobability distributionfunction rather than quasiprobability
much ground in the theory of activated rate processes due foinction [28,29. The generalized quantum Kramers’ equa-
the fact that these are primarily based on system-reservoiion (GQKE) reduces to its classical counterpart in the limit
weak coupling and Markov approximatiof&5], which are  h—0 both in Markovian and non-Markovian descriptions.
often too drastic in the situations pertaining to chemical dy-The probability distribution functions remain well behaved
namics and condensed matter physics. Subsequent to thasethe full quantum limit.
developments, quantum Brownian motidi2,4,5,17—22 (2) While the existing methods of calculation of quantum
emerged as a subject of renewed interest in early 1980s whéframers’ rate are based on path integral techniques, we solve
the problem of dissipative quantum tunneling was addresse@QKE for barrier crossing dynamics as a boundary value
by Leggett and others and almost simultaneously quantumroblem taking care of the full quantum nature of the system
Kramers’ problem and some allied issues attracted seriousnd the bath. The generalized rate in the spatial diffusion-
attention of a number of physical chemists. We refer tolimited regime reduces to Kramers-Grote-Hynes’ rate in the
[2,3,23 for an overview. classical limit and to pure tunneling rate in the quantum limit
The aforesaid development of the quantum theory ofat zero temperature. To the best of our knowledge, the imple-
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mentation of a differential equation based approach, as the , N

present one, has not been tried till data for a full quantum- F(H)=2 [{8:1(0)—X(0)}«; cosw;t + Iﬁj(O)Kjllzsinwjﬂ-

mechanical calculation of the rate. ! 4)
Based on an initial coherent state representation of the

bath oscillators and an equilibrium canonical distribution ofgnd

the quantum-mechanical mean values of their co-ordinates

and momenta, we derive a generalized quantum Langevin

equation inc numbers. The bath imparts classical looking ,8(t)=§j: Kj COSwjt, ®)

number quantum noise, which satisfies standard fluctuation-

dri]ss]cipati%n rer:ation- The iimplicuy of the treatment lisls in wherew?= «; and the initial variations of the heat bath vari-

the fact that the quantum Langevin equation is amenable to . o : 2

theoretical analysis in terms of the well known classical non'relf\/sac:{t(zzjairtlgrgj- g?a)ltigtci:c(::;lr a:\r/]eg;(;efg racfe tz(rarlrle(rg)o.WEhe

Markovian theory of Brownian motiofi24,25 so that the

GQKE assumes the form of its classical counterpart. In what (B)os=0 (6)

follows we show that GQKE can be solved in the spirit of Qs

Kramers’ method to calculate the quantum escape rate. Thigng

recasting of the quantum problem into a classical form al-

lows us to realize the various limits of the theory on a gen- %[(ﬁ(t’)ﬁ(t)>gs+<|3(t)|5(t’)>Qs]
eral footing. _
The organization of the paper is as follows. We introduce 1 hoj ,
the system-reservoir model and an ensemble averaging pro- - E; Kih o COchka cosw(t—t"). @)

cedure to derive the generalized quantum Langevin equation
in a c number form in the following section. In Sec. Ill we Here(:--)qg refers to quantum-statistical average on the bath
derive the corresponding GQKE followed by a calculation ofdegrees of freedom. To arrive at the above relations, one
quantum rate of escape in Sec. IV. The key result is illusassume$31] that the bath oscillators are canonically distrib-
trated in Sec. V by assuming a Lorentzian density distribuuted with respect to the bath HamiltoniantatO so that for
tion of bath oscillators and a specific cubic potential. Thegny operato© the average is
paper is concluded in Sec. VI.
. TrO exp( — Hpan/KsT)
Il. THE GENERALIZED QUANTUM LANGEVIN (O)Qsz " (8
EQUATION IN C NUMBERS Trexp —Hpam/KeT)

To start with we consider the standard system heat bath

model of Zwanzig forn{30]. The Hamiltonian is given by where ﬂba‘hzzi[(r)iz/z)JrulZ)Ki(qj_k)z] By trace we
' mean carrying out quantum-statistical average with number

states of the bath oscillators multiplied by the arbitrary state
. ) of the particle. Equatior(7) is the celebrated fluctuation-
dissipation relatioFDR).
. , Equation(3) is an exact quantum Langevin equation in
Here X and P are the co-ordinate and momentum operatorsperator form, which is a standard textbook materia,31].
of the Brownian particle&the Systemof unit mass and the set Our aim here is to rep|ace it by an equiva]ent guantum gen-
{8;.p;} is the set of co-ordinate and momentum operatorgralized Langevin equatiofQGLE) in ¢ numbers. It is im-
for the heat bath particles. The mass of fltle particle is  portant to mention here that again this is not a new problem
unity andx; is the spring constant of the spring connecting it[15,16] so long as one is restricted to standard quasiclassical
to the Brownian particle. The potenti®(X) is due to the methods of Wigner functions and the like. In general, how-
external force field for the Brownian particle. The co- ever, one is confronted with serious trouble of negativity or
ordinate and momentum operators follow the usual commusingularity of these quasiprobability distribution functions in

D2

A=—+V(X)+ X
2 j

a2
P; 1 A
?4- EKj(qj_x)z

tation relations the full quantum domain. To address the problem of quantum
L non-Markovian dynamics in terms ofteue probabilistic de-
[X,P]=i% and [q;,p;]=i% 4 (2) scriptionwe, however, follow a different procedure. Our ap-

o _ proach here is to split up the quantum-statistical averaging
Eliminating the bath degrees of freedom in the usual wayprocedure intwo distinct steps. Wefirst carry out the
[15,31] we obtain the operator Langevin equation for thequantum-mechanical average of E8)
particle

® t . R
e . X V’ X t_tr X tr dt/: Ft , 9
%o [favpa-nkay rvio=En @ K+ v+ [ pe-tikandr=Ew), ©
0

R where the averaging is taken over the initial product sepa-
where the noise operatét(t) and memory kerneB(t) are  rable quantum states of the particle and the bath oscillators at
given by t=0, |p){|ai)|am)--|an)}. Here|#) denotes any arbitrary
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initial state of the particle anfly;) corresponds to the initial represents the quantum-mechanical dispersion of the force
coherent state of théth bath oscillator.a;) is given by  operatorv’(X) due to the system degree of freedom. Since
|ai>=exp(—|ai|2/2)2;°i:0(ai”'/\/n_i)|ni), a; is expressed in  Q(t) is a quantum fluctuation term E¢l4) offers a simple
terms of the variables of the coordinate and momentum ofnterpretation. This implies that the classical looking gener-
theith oscillator(&;(0)) = A/ (2w;)(a; + a¥) and (p;(0)) alized quantum Langevin equation is governed by a
—iVhw2(a;— a), respectively. It is important to note that cNUMber quantum noisé(t) that originates from the

A . . _ . . . quantum-mechanical heat bath characterized by the proper-
(F(t)) of Eqg. (9) is a classical-like noise term which, in

general, is a nonzero number because of the averaging prtles (11) and a quantum fluctuation ter@(t) due to the

cedure over the coordinate and momentum operators of ”\ uantum nature of the system characteristic of the nonlinear-
: . S -1ty of the potential Q(t) can be calculated order by order. In
bath oscillators with respect to initial coherent state and i P Q1) y

SAppendix A we show howQ(t) can be calculated in the

given by lowest order.
R R Summarizing the above discussions we point out that it is
<F(t))=2 [{(8;(0)) —(X(0))}«; cosw;t possible to formulate a QGLE14) of the quantum-
] mechanical mean value of the coordinate of the Brownian
+<|?)J-(0)>K1-1’25inwjt]= f(t) (10  particle in a field of potentiaV/(X), provided a classical-like

noise termf(t) due to thermal bath satisfies Ed1) where
We now turn to thesecondaveraging. To realizé(t) an  the ensemble average has to be carried out with distribution
effectivec-number noise we now demand that it must satisfy(12). To realizef(t) as a noise term we have split up the
quantum-statistical averaging---)os into a quantum-
(f()s=0 mechanical meaf - -) by the explicit use of an initial coher-
ent state representation of the bath oscillators and then a
statistical averaging: - -)s of the quantum-mechanical mean
1 b values with Eq(12). It is easy to note that the distribution of
(f(t)f(t’)>s=§2 Kﬁq(cothﬁ) cosw;(t—t"). the quantum-mechanical mean values of the bath oscillators
b (11) (12) reduces to classical Maxwell-Boltzmann distribution in
the thermal limit Aw;<kgT, i.e. exf—(w?[(q;(0))
That. is, f_(t)' is' zero qentered and satisfie.s qugntum_<>‘((0)>]2+<ﬁj(0)>2)/2k8-|-]_ Secondly, the vacuum term
fluctuation-dissipation relation. This may be achieved if and the distribution (12) prevents the distribution function
only if one introduces the following canonical distribution of from peing singular af=0. In other words the width of
quantum-mechanical mean values of the bath oscillators &istribution remains finite even at absolute zero, which is a

and

t=0: simple consequence of uncertainty principle.
25/ Y 2 A 2
®7{(9;(0)) —(X(0))}*+(p;(0)
Pj=exr{ - | J{< J )~ — >}1 < J ) | (12 Ill. THE GENERALIZED QUANTUM KRAMERS’
Zﬁwj(nj + §) EQUATION

so that for any quantum-mechanical mean value Itis now convenient to rewrite the generalized Langevin

Oj(<ﬁj(0)>,{<ﬁ1j(0)>—(5((0))}), the statistical average is ~ €duation(14) of the Brownian particle in presence of an
external force field in the form

<Oj>s:f 0;((p;(0)),1(g;(0)) .
A X 5'(+V’(x)+f,B(t—t’)X(t’)dt’=f(t)+Q(t). (16)
—(X(0))DP;d(p;(0))d{(d;(0)) — (X(0))}. °

(13 where we let{X)=x for a simple notational changg(t) is

Heren; indicates the average thermal photon number ofhe dissipative kernel ani(t) is the zero-centered stationary
the jth oscillator at temperaturel as defined byn;  noise due to the reservoir where
=1 expfrw;/kgT)—1].
To proceed further we now add the force tevit((X)) on (f(1))s=0, (f(OF(t"))s=c(jt—t'])=c(r). (17)
both sides of Eq(9) and rearrange it to obtain formally
Herec(7) is the correlation function, which in the equilib-

<§(>+V’(<)A())+ Jtﬂ(t—t’)<§<(t’)>dt’ =f(t)+Q(t) rium state is connected to memory keryglk) through FDR
0 ’ of the form
14
where VR hw .,
) ) c(t—t")= 5 jo do k(w)p(w)ho COth_ZkBT cosw(t—t').
Q) =V"((X)) —(V'(X)) (15 (18)
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Equation(18) is the continuum version of Eq1l). p(w) is  with
the density of modes of the reservoir oscillators. In the con-

tinuum versions(t) is given b d d
A(1) Is given by Mo(t)= g Mo(t) and go=g:Go(t).  (29)

At Jo do k(w)p(w)cose(t-t") (9 It is not difficult to check thaM y(t) andmg(t) are the two

relaxation functionsmg, measures how the system with a
In the high temperature limitkgT>7% ) one recovers the quantum-mechanical mean velocity forgets its initial value
well-known classical FDR through while Mo(t) concerns the relaxation of quantum-mechanical

N , mean displacement.
c(t=t)=kgTB(t=1"). (20 Now using the symmetry properties of the correlation

We now proceed to the solution of E€LE). One of the ~function (F()f(t'))s [equal toc(t—t")=c(t’—t)] and the
essential steps in this direction is to linearize the potentiapolution forx(t) andu(t) from Egs.(21) and(27) we obtain

V(x) in the left-hand side of Eq16) around the bottom of the following expressions for the variances:

the well atx=Xx, S0 thatV(x) =V(Xo) + (3) wa(X—Xp)%. w} 02, (1) = ([X(1) — (X(1)) ]2
refers to the second derivative of the potentdk) evalu-
ated atx=Xg. This together with a Laplace transform of Eq. ¢ 4y
(16) leads us to the following general solutiowe takex, =2f Mo(tl)dtlf Mo(ty)c(t;—t,)dt, (303
=0 for the present sectign 0 0
t 2, (O =([v()—(v(D)s]?
x(t)=<x(t)>s+f Mo(t— ) f()dr, (21) (O ={0 (O =M}
0
t ty
where ZZJOmO(tl)dtlj’o Mo(tz)c(ty—tz)dt; (30b)

=v(0)M 0) xx(1)+G 22 L.
N7 OMAD O Gl (22 0% () =(DX(D) — (X(O)s][0 ()~ (0 (D)s])s= Tl 1)

and
t ty
t = | My(ty)dt f mo(ty)c(ty—t,)dt,. (300
Go<t>=f Mo(t—7)Qq(7)d. (23) fo ST T e
0

t The expressions for variances are general and valid for
—1_.2 arbitrary temperature and friction and includes quantum ef-
xdH=1 wOJOMO(T)dT (4) fects. To recover classical limit of the variances

ol (1),02,(1),02 (t) one has to use EG20) instead of Eq.
with x(0) and v(0) [equal to X(0)] being the initial (18) in Egs. (309—(300). It must also be emphasized that
quantum-mechanical mean values of the coordinate and vgsgs. (309 —(300) are the expressions for statistical variances
locity of the particle, respectivelyy(t) is the inverse form  of the quantum-mechanical mean valug$) ando (t) with

of the Laplace transform of distribution(12). These are not to be confused with standard
guantum-mechanical variances, which are connected through
Mo(s)= - (25) the uncertainty relation.
ofs)=———— : . . -
s2+ SB(S) + w? Having obtained the expressions for statistical averages

and variances we are now in a position to write down the
with quantum Kramers equation, which is a Fokker-Planck de-
scription for the evolution of true probability density func-
~ * _ tion p(x,v,t) of the quantum-mechanical mean values of the
B(s)= fo At)e”Hdt (26 co-ordinate and momentum of the particle. To this end it is
necessary to consider the statistical distribution of nb{sg
is the Laplace transform of the dissipative kergé¢t). The  which we assume here to be Gaussian. For Gaussian noise
subscript 0 inQ,, My, andGy signifies that the correspond- processes we defir{@5,31,34 the joint characteristic func-
ing dynamical quantities are to be calculated arousdg. tion p(u,p,t) in terms of the standard mean values and vari-
The time derivative of Eq(21) gives ances

v()=(v(t))s+ ftmo(t—f)f(f)dr, (27) Plu,p,t)=exdiu(x(t)s+ip(v(t))s— %{Uix,u,z-f-ZO'ivp,u,
0

+a7,0%] (3D)
where
Using standard proceduf®4,25,31,34 we write down

(v(1))s=v(0)Mg() = x(0)wgMo(t) +do(t)  (28)  the quantum Kramers’ equation obeyed by the joint probabil-
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ity distribution p(x,v,t), which is the inverse Fourier trans- It is important to emphasize that E€B2) retains its full
form of the characteristic function validity in the quantum limit whem— 0. It is also apparent
thatGy in Eq. (23) [therefore ingy(t) ] demonstrates a direct
ap(x,v,t) _ —vi+V’(X)i+[Q t) convolution of the relaxation functiom y(t) with quantum
at IX dv 0 dispersionQg(t). This is a clear signature of the interplay of

P P p dissipation with the nonlinearity of the potential within a
_ _ 2= 7 guantum description.
No(t) ﬂv] p(X,v,t)+[go(t) oX 7o) "’ The decisive advantage of the present approach is note-
worthy. We have mapped the operator generalized Langevin
]p(x,v,t), (32  equation(3) into a generalized equation fernumbers(16)
and a corresponding non-Markovian Kramers’ equatR®a).
The present approach thus bypasses the earlier methods of
quasiprobability distribution functions employed widely in
quantum optics over the decades in a number of ways. First

92 92
+ ¢o(t) 2t Po(t)

Jv dX

where

9o(t) =Go(1), (333 unlike the quasiprobability distribution function, the prob-
d ability distribution function p(x,v,t) is valid for non-
Yo(H)=— g7 [InYo(1)] (33p  Markovian processes. Second, while the corresponding char-
t L

acteristic functions for probability distribution functions are
operators, we make use of the classical characteristic func-
tions. Third, as pointed out earlier the quasidistribution func-
tions often become negative or singular in the strong quan-
tum domain and pose serious problehs,32. The present
1 . 5 approach is free from such shortcomings sip€gr,v,t) is a
m[— Mo(t)mo(t) +mg(t)], (330  true probability distribution function rather than agua-
siprobability function[28,29. Fourth, the generalized quan-
t tum Kramers’ equation derived here is valid for arbitrary
(1—w§f Mo(t)dr)

t
Yoty = T

1—w§fotMo(T)dr +M3(1), (330

a’o(t):

temperature and friction.
Regarding quantum generalized Kramers’ equation we
further note that although bounded, the time dependent func-
+mgeo} (339  tions yy(t), do(t), ¥o(t) may not always provide the long
time limits. This is well known in classical theori¢24,25.
These play an important role in the calculation of non-
() =Mn(t ﬂ G (t t (33) Markovian Kramers' rate. Therefore, in general, one has to
o(1)=Mo(t) [ Go(mo(D)] work out the frequencyg(t) and friction J4(t) functions
for the analytically tractable models. In Sec. V we shall con-
Bo(t) =D5(1) o2, () +Fo(t) o2, (1) + 352,(1) (339  sider one such explicit example.
We now consider the stationary distribution of the par-
Po(1) =2, (1) +Fo(t) o2, (1) + D(1) 02 (1) — o2 (1). ticles nearx=0 that can be expressed as a solution of Eq.
(330 (32 for 9pd/at=0

1 1
No(t)—m —go(t)mow—(z)

V(x) is the renormalized potential linearized at the bot- d J _, d
tom of the well atx=0, the frequency bein@,(t) as given v o~ 90(%) = @)X 2= [Qo()
by Eg. (330d. The above Kramers’ equatiof82) is the
guantum-mechanical version of the classical non-Markovian N I | 5 - d
Kramers equation and is valid for arbitrary temperature and ~No() 1571 Psi(X,0) = Yo(*) 70+ () =3
friction. The quantum effects appear in the description in two
different ways. First, due to the explic@ dependencey(t) 4 0 _
[see Egs(23) and (338], Qy(t) and Ny(t) manifestly in- () v IX Ps(x,0)=0. (34
clude the effect of quantum dispersion of the system through _ - o
the nonlinearity of the potential. Second, the quantum diffu-where the drift and diffusion coefficients of E4) assume

sion coefficientsgo(t) and go(t) are due to the quantum- their asymptotic values. . _
mechanical heat reservoir. In the classical limit It may be checked immediately that the stationary solu-

9o(1),Q4(t),No(t) vanishes whilapo(t) andyo(t) reduce to  tion of Eq.(34) is given by
the forms that can be obtained by using the classical

(92

2

_ 2
fluctuation-dissipation relatiori20) in Eq. (30) and Egs. pgt(x,v)ziexp{_w}
(33g) and (33N. In the classical limitksT>%w Eq. (32) z 2D¢
therefore reduces exactly to non-Markovian Kramers’ equa- < ~
tion derived earlier by Adelman and Mazo in late 1970s xex;{—v(x)ﬂ(ﬂo_ No™ Yo9o) (35
[24,25. Do+ ¢
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whereD = ¢()/Yo(*); &g, ¢, Lo, Ng andgg are the
values of the corresponding quantities in the long time limit.
Z is the normalization constant. He¥&x) is the renormal-
ized linear potential with a renormalization in its frequency.
Equation(35) is the quantum steady state distribution. It
may be checked easily that in the classical Markovian limit
the ratioD, goes over tkgT while ¢, vanishes along with
00.Q0,Ng reducing Eg.(35) to the form of Maxwell-
Boltzmann distribution function. In what follows in the next
section we shall make use of the quantum distribut@5) as
a boundary condition for calculation of Kramers’ rate.

IV. THE QUANTUM KRAMERS’ RATE

We now turn to the problem of barrier crossing dynamics.
In Kramers’ approach the particle coordinatévhich in our
case it is the quantum-mechanical mean posjtioorre-

PHYSICAL REVIEW E65 021109

d
Vo)== g[INYu(D)], (40a
Yb(t)—mw(bt) 1+wat o(T)dr [+ M2(t), (40b
B0 =7 5[~ Mo +mi(D)], (409

1 1 t
Np(t)= Y(t)[gb(t)mb > 1+wa b(T)dT)

sponds to the reaction co-ordinate and its values at the
minima of V(x) denotes the reactant and the product states
separated by a finite barrier, the top being a metastable state

representing the transition state.
Linearizing the motion around the barrier topxat x;, the
Langevin equation can be written down as

t
K- wflx-x)+ [ A=A =10+ 0y,
36)

where the barrier frequenayﬁ is defined byV(x)=V(Xy)
- (%)wﬁ(x—xb)z. Also the quantum dispersidp,, has to be

calculated at the barrier top. Correspondingly the motion of
the quantum particle is governed by the Fokker-Planck equa-

tion

ap(x,v,t)

(7 d Jd
Fram _gb() +wb(x Xb _[Qb(t)

Yol )&U v

d
—Nb<t>]5} P00, )+

9? 9?
+ ¢p(t) 2T (1) 7 &X} p(X,v,t). (37)

where the subscript’ indicates that all the coefficients are
to be calculated at the barrier top using the general definitio
of the last section where

~ 1
My(8) = ————, (38
s2+sB(s)— o},
which is the Laplace transform &fl ,(t) and
t
XE(t)=1+w§J Mp(t’)dt!. (393
0
Furthermore we have
my=M, and gy(t)=Gp(t); (39b)

+m§6b}, (40d)
d
Qb(t):Mb(t)a[Gb(t)mb(t)]a (408
() =Dt 02, (1) +Fo(t) o2, () + 302, (1), (40
Po(1) =02, (1) + Fp() 02, (1) + DE(L) 02 (1) — a2, (1),
(409

In the spirit of classical Kramers’ ansdtz] we now de-
mand a solution of Eq.37) at the stationary limit of the type

pSt(le):pO(X!U)g(va) ’ (41)
with
_ 3 (v=0p)? V() +xX(Qp—Np+Fp0p)
Po(X,v)=ex 2Dy Dp+ ¢y
(42)

whereD = ¢p()/Y(); ¢y, 9y, Ny, ¥, are the long time
limits of the corresponding time dependent quantities spe-
cific for the barrier region. The exponential factor in E4jl)

is not the Boltzmann distribution but pertains to the dynam-
ics at the barrier top at=x,. Due to the presence af,,

Q,, Ny one may easily comprehend the signature of quan-
tum nature of the system whilé,, i, carries the effect of
guantum noise due to heat bath. The distribufignemains
finite even at absolute zero.

N Now inserting Eq(41), in Eq. (37) in the steady state we
obtain

lﬂb 4 by,
(Qp—Np) =0\ 74
X | X—Xp— — +%(v —0p) o
Wp
P 2
¢ ¢
thugz t g, = (43
We then set
u=a(x+ap)+v—0p, (44

021109-6
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where

=7 . (45

‘(Lb_ Nb+7ybgb+xb?;)b
an= — o
b

and with the help of transformatidd4) Eq. (43) is reduced
to the following form:

32{ Db ~2 ~ l/fb
(¢otayy) 72— mwb(XJrabH Yota 1+D—b
74
X(v=gp) |5 =0. (46)
Now let
b lxtag+|Foral 14 L0 ](v—g )=\u
Yp+Dp P b b Dy, b '
(47
where\ is a constant to be determined.
From Egs.(44) and (47) we obtain
__B, V(B?/4A) + (CIA 48
where
. P . Dy,
A=1+ D_b B=%,, andC= Jo i Dy o (49
By virtue of the relation(47), Eq. (46) becomes
d°¢ +A d¢ =0 50
W Uﬁ— ) (50
where
A= A (51
dpt+ady)

The general solution of the homogeneous differential

equation(50) is

u Au?
g(U):szo ex;{ - T

whereF, andF, are the two constants of integration.

The integral in Eq(52) converges fofu| — if only A is
positive. The positivity ofA depends on the sign af so by
virtue of Eqs.(44) and(47) we find that the negative root of
a. i.e., a guarantees the positivity of since—xa=C. To
determine the value df,; andF, we impose the first bound-
ary condition on

(52

du+F,

{(Xx,v)—0 as x—o for all v. (53
This condition yields
aT 1/2
Fi= Fz(ﬁ) (59)

PHYSICAL REVIEW B55 021109

By insertion of Eq.(54) in Eqg. (52) we obtain

2oy
+f ¢~ APduy
0

{(u)=F, : (55)

2A

Since we are to calculate the current at the barrier top, we
expand the renormalized potenti&(x) aroundx=xy,
V(%) =0 (Xp) = 3@(X—Xp) 2. (56)

Thus with the help of Eqg55) and(56) Eq. (41) becomes

V(xb>+xb<9b—Nb+gb~yb>>

X=Xp,v)=Fyexp —
pSt( b U) 2 % Db+¢b

1/2 ( —g )2
X %) exp(—va: +F(X=Xy,v)
N2
xex;{——(UZDg:) ” (57)
with
F(x,v)zfue’(Az’z)du. (58)
0

We now, define the steady state currgatross the barrier
as

+ oo
i= | upatcox 0o, (59)

An explicit evaluation of the integral using EG7) yields
the expression for currentat the barrier by

) 27TDb 12 Aaz(ab-i-xb)z
J=Fo|Dpl 57— exp——5"<
(1+Dy) 2(1+ADy)
o \12
+gb e \/2Db77+|
2A
\~/(Xb)+Xb(Qb—Nb+9b7’b)]
X exp, — , 60
p{ Dp+ ¢y (60
where
[t (v—gp)?
I= le F(X—Xb,v)exi{— 2—Db dv. (61)

Having obtained the stationary current at the barrier top
we now determine the constanj in Eq. (60) in terms of the
population of the left well around=x,. This may be done
by matching the two appropriately reduced probability dis-
tributions at the bottom of the left well.

To this end we return to Eg41), which describes the
steady state distribution at the barrier top. With the help of
Eq. (55) we write

021109-7
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(x.0)=F, ex V) +x(Qp= Np+go71)
pSt W)=F2 Db+ l//b

xexd - ="
Jrod-22]e]

We first note that ag— o0, u—« the preexponential fac-
tor in ps(X,v) reduces to the form

(v—0p)?
2D,

(62

(63

20 1/2
3

Fol--]= Fz(

We now define a reduced distribution functionxmas
~ te

Pa00= | puxo)do. (64

Hence from Eqs(63) and(64) we obtain

e

Similarly we derive the reduced distribution function in
the left well aroundk= x, using Eq.(35) as(xy, may be put
zero without any loss of generaljty

Dy

A

V) +x(Q = Np+goT)
Do+ ¢

"ﬁst(x)=27ﬂ:z(

V(x0) +Xo(Qo—No+go¥o)
Do+ o

1
Pei(x0) = 5 V27D exp[ -

(66)

where we have employed the expansion\k) as V(x)
=V(xo)+(3)@5(x—x%g)? and Z is the normalization con-
stant.

We impose the second boundary condition thaxatx,
the reduced distributio65) must coincide with Eq(66) at
the bottom of the left well i.e.,

Pst(Xo) :ﬁgt( Xo)- (67)

The above condition is used to determifgin terms of

normalization constari of Eq. (35)

1/2 1/2

1/ A \*¥ D,
Fmo| —| |22
z\2 \D,
V(Xo) +Xo( Qo= No+9o¥0)
Xexpg —
Do+ g
V(Xp) = 3@(Xo— Xp) >+ Xo( 2y~ Np+ g5 )
X exp .
Dp+ iy

(68)
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Furthermore by explicit evaluation of the normalization
constant using the integral

+ o0 + oo
f f po(X,v)dx dv =1, (69)
wherep?(x,v) is given by Eq.(35). We obtain
2m [Q6—No+do¥ol?®
Z=——Dg4Do+ l/ZeX;{ X
;00 (Dot #0o) 2(Dot Yoy’
V(o) +Xo( 20— No+ go¥0)
xXexp — 70
F{ Dot 4o (70

Making use of Eq(70) in Eq. (68) we obtain from Eq(60)
the final expression for quantum Kramers’ rate, based on
flux-over-population methof,33], as

B H)O A 1/2 1
“ 2727 DIAD+ ) 2

27Dy, |12 Aa*(Qp—Np+0p¥p)?
X Db exp —
12

1+AD, 2(1+ADp)op
( \27TDb+| ]

. p( - E+(9b—Nb+gb~yb><ﬁ/ab>)
Dp+ ¢y ’

where we have used the relatiai6) to obtain V(xo)
=V(xp) — (3)@2(xo—xp)? and definition of activation en-
ergy asE=V(x,) — V(xo).

A close look into the definition&394), (40d), and(40e of
Q, N, andg in the exponential factors in E¢r1) reveals that
each of them is proportional to the anharmonic correction
term of the potentialV"”(x) in the leading order so that
[Q0—No+0o¥ol?/@5~[V" () P/[V"(X)], [Qp—Ny
+ 9T D~V () ?[V"(x)]?,  whereas [Qp—N,
+ b vl 0p~[V"(X)]/V[V"(X)]. The last ratio being the
dominant contribution the expressi¢nl) then can be sim-
plified as({) vanishes in the long time limit

[Qo—No+do¥o]?
2(Do+ o) @5

|

™

+0p A

(71)

B Z)O A )1/2 1 5 27TDb 1/2
" 2w\ 27 DYADg+o)?| TPl 1+AD,
T 1/2
+gb _— \/27TDb+|
2A
(Nb—Qﬁ’b)\/E) F{ E )
Xexp ——————|exp — ——|. 72
wp (Dot d) Dyt 2

The above expression is the quantum Kramers' rate,
which is a direct generalization of classical hon-Markovian
rate valid for intermediate to strong damping regime and for
arbitrary decaying correlation function and temperature. The
derived rate thus includes the effect of tunneling in a natural
way to modify the classical rate.

To recover the classical non-Markovian expression from
Eqg. (71) one has to take into consideratign the system
concerned quantum correction due to nonlinearity, Ng,,

021109-8
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andg, must vanish(ii) the heat bath noise related quantities,
e.g.,D andy are to be calculated from the expressions of the
variances(30) usingc(t—t') in the classical limit, i.e., Eq.

PHYSICAL REVIEW B55 021109

2

a9(29°-p%)—q%-e
do= ao— po ’

(20). Under these two conditions, E(/1) is reduced to the —ad® ab. c 1/3
classical expression Ag=| ==+ 20 04 /Ry
o\ 27 6 2 °)
@o A He Dy E 3 1/3
=5 cHC C o 128XQ — =¢ c ap aghy ¢
(73 27 6 2

0

where the superscriptc” signifies the classical limit of the (o
co=——[(do—q%)?+e]*?,

guantum-mechanical quantities, such &y(D,) and
Yo(p). The above expression is identical in form to the one
derived for classical non-Markovian dynamids3,14,28. and

V. A SPECIFIC EXAMPLE: EXPONENTIALLY 1

CORRELATED MEMORY KERNEL

ap= tan”

!
do_qO (78)

The structure of3(t) given in Eq.(19) suggests that itis and
quite general and a further calculation requires a prior oo 3 3 )
knowledge of the density of modegw) of the heat bath aghp by ago aghoCy  Co
oscillators. As a specific case we consider in the continuum o=~ 108 27" 27 6 T30
limit

for the present problem.
r Now making use of the expressidii7) for M(t) and
(74) expression18) for correlation functionc(t) in Egs.(309—

(300 we calculate explicitly, after a tedious long but straight
so thatg(t) takes the well known form of an exponentially forward algebra, the time dependent expressions for the vari-
correlated memory kern¢84] ances of the quantum-mechanical mean values of the posi-

tion and momentum of the particle. These expressions are

2
k(w)P(w)=;(1+TTz)

r t i
B(t)= T—ex;{ _ |T_|} (75 given by
¢ ¢ ’ 2hI (» o hw
whereT is the damping constant and refers to the corre- T = T Jo 1+ wzr§<00th2ka)]:X(w’t)dw
lation time of the noise. Once we get an explicit expression
for B(t) and its Laplace transformB(s)=T"/(1+s7,), it is 5 2hT fw w ( ho )
. ~ o,, ()= >— | coth Folow,t)dw
possible to make use of EQR5) to calculateM(s) and the 7 Jo 1+ wrg 2k, T
relaxation functionM (t), which for the present case are
given by[34] and
. s+a a2 (=102 (1).
Mo(8)= a1 52+(E) +c (76) ot
0 0"~ In Appendix B we provide the explicit structures of
with Fi(w,t) andF,(w,t). Since in the long time limit2, &2,
5’31; vanish, the calculation of the quantitiBs,, Dy, #q, ¥,
) mg essentially rest on the asymptotic values aﬁx(t) and
Bo= bo=wp+ . T o2, (1) evaluated at the barrier top or the bottom of the well.
It must be emphasized that the quantities are nonvanishing at
and T=0 due to quantum fluctuation of the heat bath.
We now turn to the calculation of the relevant asymptotic
Mo(t)=clePo'+cle %" sin(et+ay), (77)  coefficientsg, andNy, in the expression for the rat€, and

Q, vanish in the long time limit due to the relaxation func-
tion). Both of them are related to the convolution integral
through the relation§40d) andg,=G,, . SinceG, is defined
as [{My(t—7)Qy(7)d7, whereM, and Q, correspond to
the barrier todandM, andQ, to the bottom of the potential
well), we make use of the expressions M andM, along
with those forQ, andQg, as shown in Appendix A to obtain
Go(t) and Gy(t) and their asymptotic values. Considering

respectively, where

Qo
3l

Qo

Po=—Ao—Bot QO=%(A0+BO)+§,

3
f— f— 0:
=75 (Ao=Bo) C1=5p0 g
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6
-54
(a)
-104 57
X
c X
- L)
-15 =
41
=204
0 1 2 3 S 1.6 18 20 22 24
1T T
FIG. 1. Plot of Ink vs 1/T using Eq.(72) for different values of
the damping contar(e) I'=1.3, and(b) I'=1.7[Inset: Plot ofk vs 8 .
T illustrate theT? dependence at very low temperature. The param- ]
eters are same as in the main figugenits arbitrary. . (b)
only the short time linearity ofG,(t) (since the quantum
effect in Qu(t) has been taken into account for the lowest - 5
order in the Appendix Acalculation ofgy, is quite straight o 1
forward. Furthermore the expression fég as given by Eq. T
(40d) can be simplified in the asymptotic limit to obtain 5
MEGy(t)
Np(t)= ———.
b ) Mg 4 T T T T T T
1.4 1.6 1.8 2.0 2.2 2.4
Both g, and N, involve the constantg6X?),_, and r
(85X 5P+ 6P 5X)—o, which are assumed to b&/(2wp)
(minimum uncertainty stajeand zero, respectively, for the 257
present calculation. 1 (C)
To analyze the associated non-Markovian nature of the 201
dynamics at various temperatures it is necessary to go over .
to numerical simulation of stationary values@f, D, and 151
Yo, ¥,, and A. These in turn, are primarily dependent in = ]
o2 (t) ando? (1), the other variances being vanishing in the S 40-
long time limit. For the present purpose we assume the sim-
plest form of the cubic potential of the typ¥(x)= 5
—(1/3)Ax3+Bx?, where the parameter set usedAis0.5; .
B=[(3/4)A’E]*3, the activation energy=V(xp)—V(Xo) 01
=10. The correlation time of the noisg is fixed at 0.3. The —— 71—
temperature and the damping constrre varied set to set. 14 16 18 20 22 24
The quantitiesg, and N,, which incorporate quantum ef- T

fects through the anharmonicity of the potential, can be eas-
ily calculated numerically as outlined in the previous para-
graph. In Fig. 1 we show the Arrhenius plot, i.e., the
variation of Ink vs 1/T for two different values of damping
constantl". It is apparent that in the high temperature regimefunction of the damping constaht at several temperatures.
the plot exhibits linearity, which is the standard Arrheniuslt is apparent that at a relatively high temperature the rate
classic result. In the low temperature regime, however, onearies inversely with the damping constant while at low tem-
observes a much slower variation that is a typical quantunperature the rate drops at a much faster rateTAtO the
behavior. To single out this low temperature behavior, wedecay is exponential in nature. The quantum rate in this situ-
show in the inset of Figl a clearT? dependence of the ation essentially corresponds to zero-temperature tunneling.
rate—a feature observed earlier in the recent paktIin  This result is in satisfactory agreement with that of Caldeira
Figs. 2a)—(c) we exhibit the variation of the ratk as a and Leggetf20]. The present theory, therefore, unifies the

FIG. 2. Plot of quantum Kramers’ ratevs T using Eq.(72) for
(a8 T=5.0,(b) T=3.0, and(c) T=0.0 (units arbitrary.

021109-10



APPROACH TO QUANTUM KRAMERS’ EQUATION AND . .. PHYSICAL REVIEW B55 021109

aspects of quantum tunneling and thermal noise-induced badiffusion regime and further to implement other methods of
rier crossing on the same footing. the treatment of classical Brownian motion.
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Markovian theory of quantum Brownian motion in phase financial support.
space. Based on an initial coherent state representation of
bath oscillators and a canonical equilibrium distribution of
guantum-mechanical mean values and their coordinates and
momenta, we have shown that it is possible to realize a sto- The quantum fluctuatiof is defined in Eq(15) as
chastic differential equation ic humbers in the form of a
generalized Langevin equation and the associated Fokker- Q()=V'({X)) —(V'(X)). (A1)

Planck equation that can be recognized as a generalized .

quantum Kramers' equation. The Kramers' equation is then So far as thz 9?””1' for_muflaltlmg of ther;[heory gptthec
employed to derive the rate of barrier crossing that includeé IS concerne Q,'S taken n full. Orin other words the
uantum Kramers’ equatio(82) or the rate Eq(71) incor-

both tunneling and thermal induced effects on the same foo .
g porates quantum effects due to the system in all orders. How-

ing. The main conclusions in this study are the following. . ) .
(i) Our ensemble averaging procedure and the QGLE arEVer in actual calculation® has to be estimated order by

amenable to theoretical analysis in terms of the methods dé)_rder[35]. To this end we consider the lowest order quantum

veloped earlier for the treatment of classical non-MarkoviarCOITections. Returning to the quantum mechanics of the sys-

theory of Brownian motion tem in Heisenberg picture, it is convenient to write the op-

(i) The proposed Kramers’ equation is an exact quantungratorsX andP as
analog of classical generalized Kramers’ equation derived

APPENDIX A: CALCULATION OF QUANTUM
DISPERSION Q

earlier in late 1970s by a number of workers. Since we have X(t)=(X(t))+ X,
dealt here withtrue probability functionghe theory is free . . -
from the problem of singularity or negativity efuasiclassi- P(t)=(P(t))+ 6P, (A2)

cal distribution functions, which is often encountered in N R N o
Wigner equation approaches. The equation is valid for arbiwhere (X(t)) and (P(t)) are the quantities signifying
trary temperature and friction. guantum-mechanical averages af and §P are quantum

(iii) The realization of noise as a classical looking entity,corrections. By constructiofsX ) and(sP) are zero andX

which satisfies quantum fluctuat|0n—d|SS|pat|_on reIayon, al'and 5P obey the commutation relatidX, sP]=ih. Using
lows ourselves to envisage quantum Brownian motion as

guantum generalization of its classical counterpart. Thgq'(Az) in (V’(X)) and a Taylor expansion aroug) it is

method is based on the canonical quantization procedure aRpSSiPIe to expresQ(t) as (keeping the lowest order non-

is independent of the path integral formalisms. vanishing term

(iv) The quantum Kramers’ rateEq. (71)] is valid for 1 . A
intermediate to strong damping regime and for arbitrary tem- Q(t)y=—- EV”’((X))(&XZ(t» (A3)
perature and decaying noise correlations. It reduces to clas-
sical non-Markovian rate and purely vacuum fluctuation-
induced rate or tunneling in the appropriate limits.

(v) The theory incorporates quantum effects in two differ-
ent ways. The quantum nature of the system is manifested

where(X) and (X2 follow a coupled set of equations as
given below

through the nonlinear part of the potential while the heat bath (X)=(P),
imparts the usual quantum noise. It must be emphasized that N .
our general analysis takes into consideration the quantum (Py=—V"({(X)),

effects of all orders.

(vi) The theory also reveals an interesting interplay of the
nonlinearity and dissipation in the Fokker-Planck coefficients
that include quantum corrections. The variation of the rate
due to tunneling and activation with respect to the tempera-
ture and damping has been clearly demonstrated.

The theory presented here is a natural extension of the
classical theory of Brownian motion in the sense that the d -, S ~ A ~
quantum Kramers’ equation iassical-looking in form but i {OPI =~V ((X))(6XSP+ 6P OX) (A4)
guantum-mechanical in its contedtlso we have considered
only the spatial diffusion-limited regime in the calculation of  The above set of equations can be derived from Heisen-
the rate. It is worthwhile to extend the approach to the energperg’s equation of motion. In the Kramers’ problem one is

d . C oo
m(5X2>=(5X5P+5P5X),

%w)‘(&m SP 6X)=2(5P?) —V"((X))( 5X?)

021109-11
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primarily concerned with the local dynamics of the systemand

around the barrier top gtX)(=x)=x, or at the bottom at
(X)(=x)=xo. The solution depends critically on the nature
of the curvature of the potential, i.8/"({X)). Considering
the local nature of the dynamics we have expresg&gk
=X,)=—w; and V"(x=x)=wj and consequently the

PHYSICAL REVIEW E65 021109

t
P [ Not[p%61 3t + aocdia(ty)

— el 5(ty)]dty, (B2)

equations for the quantum corrections can be solved indgyhere

pendently of the first two of EqgA4). A solution of ( 5X?)
aroundx=xq, which is an elliptic fixed point is therefore
given by

. . (6P?)_¢
(8K2(D)x—x, = 3| (5K)1-0— "7 —| cO% 2wt)
0
(6XSP+ 8P 6X)_g . 218
+ 2w0 S|n(2wot)+ 4_(1)c2),
(A5)

where 1§ is an integration constant and is given b
=(6P?)_o+ w3(5X?)_o. Therefore, the quantum disper-
sion at the bottom of the well is given by

Qo(t)=—3V"(X){ X2(1) )y, (A6)

where(&)A(Z(t))XNXO is governed by Eq(A5). Similarly we
calculate quantum fluctuatio@,(t) near the top of the po-
tential barrier ak=x, as

Qul(t) == 3 V" (Xp)(SX() )x—x. (A7)

where(ﬁf(z(t))mb in a solution of the last three equations
of Egs.(A4) aroundx~Xx, and is given by

<55(2(t)>x~xb: ( 55(2>t=0COSK2wbt)

. (XSP+ 6P 8X)—o

Doy sinh(2wpt)

(A8)

It is interesting to note the hyperbolic nature of the top of
the barrier that is reflected in the exponential divergence of
the quantum fluctuations. This point has been studied exten-
sively in the recent literature in the context of chf®6—39.
Having evaluated the quantum dispersighsgt) andQp(t),
we are now in a position to calculate several related quanti-
ties such a&(t), N(t), Q(t), andg(t). A better estimate of
the quantum correctio® can be obtained from the solutions
of the equations of higher order corrections derived earlier
by Sundaram and Milonri35].

APPENDIX B: CALCULATION OF Fy(w,T) AND F/(w,T)

The expressiong,(w,t) and F,(w,t) are given by

t
Flot)= fOMom)[c&JI1(t1>+c2|2<t1>]dt1 (B1)

021109-12

0 0y . g0
No(t)=cIple P t+cIqle 9 tsin(et+ ) —coee 9

X coq et+ a). (B3)

Herelq, I,, andl; are given by the following expressions.

|l:_szeiptl+sz COSwjtl-i- Blj Sinwjtl, (B4)

;=3[ — By cOS wjt; + @) + Byje 94 cod wjt; + )

X cog wj_t1)+Bgje” M cogwjt; + a) X sin(w;_t;)

* B6] Sir](wjt1+ a)— ste_qtl Sir(a)jt1+ @)

X cog wj_ty) +Byje” 11X sin(wit; + a)sin(w;_t;)

+Bg; cog wjt;— ) —Bzje” " cog wjt; — @)

X cog wjt1) —Bsje” M cogwjt; — a)sin(w; ;)

+ B5] Sin(wjtl— a)— B5je_qt1 Sir‘(wjtl— )

X COS (J)] +t1) + B3je_qtl Sln(wjtl— Q)S”'(LL)J +t1)],
(BS)

|3=3[Bgj COY wjt; +a) —Bgje™ 9" cog wjt; + a)

X cog wj_t1)+Bye M cogwit; + a)

Xsinwj_t1+ By sinwjt;+ @)

—Byje” 1 sin(wjt; + @)cog wj_t;) —Bge” 9"

X sin(wjty+ a)sin(w;_ty) + Bs;

X cog wjt;— a)—Bsje” M cog wjt; — a) X cog wj .+ t;)
+Bgje M cog wjt; — a)sin(wj . t;) + Bgj sin(wt; — @)

- ngeiqtlx S|n((l)]t1_ a)COSQ)J'thl)

where

—Bsje” M sin(wjt;— a)sin(w; )], (B6)
a)j+=wj+a, wj_-=wj—a,
Byj= pzijwjz, Byj= pszjz,
Baquzfzﬁza B4j=qzj_)j(;j_2,
SRS .



APPROACH TO QUANTUM KRAMERS' EQUATION AND . .. PHYSICAL REVIEW B55 021109

[1] H. A. Kramers, Physic@Utrech) 7, 284 (1940. [19] J. Liao and E. Pollak, J. Chem. Phyi<0, 80 (1999.

[2] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phgg, [20] A. O. Caldeira and A. J. Leggett, Phys. Rev. Let6, 211
251 (1990. (1981); Ann. Phys(N.Y.) 149, 374(1983; Physica A121, 587

[3] V. I. Mel'nikov, Phys. Rep209, 1 (1991). (1983.

[4] Y. Tanimura and R. Kubo, J. Phys. Soc. Jp8, 1199(1989.  [21] H. Grabert, P. Schramm, and G. L. Ingold, Phys. Re§& 115

[5] Y. Tanimura and P. G. Wolynes, Phys. Rev43, 4131(1991). (1988.

[6] W. T. Strunz, L. Disi, N. Gisin, and T. Yu, Phys. Rev. Le&3,  [22] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
4909 (1999. Garg, and W. Zwerger, Rev. Mod. Phyg9, 1 (1987).

[7] P. Pechukas, J. Ankerhold, and H. Grabert, Ann. Phys.[23] P. Talkrey, E. Pollak, and A. M. Berezhkovskii, Chem. Phys.
(Leipzig) 9, 794 (2000; J. Ankerhold, P. Pechukas, and H. 235 131(1998.
Grabert, Phys. Rev. Letg7, 086802(2001. [24] S. A. Adelman, J. Chem. Phy8d, 124 (1976.

. o . ) [25] R. M. Mazo, in Stochastic Processes in Nonequilibrium Sys-
(8] E'h L:I%ee. E:gr%%?;%’sé'og;)d()”" and . Rodriguez-lturbe, tems edited by L. Garido, P. Segler and P. J. Shepherd, Lecture
ol );\I Man.te n,a So 0o .nolo Phys. Rev. a4, 3025 Notes in Physics Vol. 84Springer Verlag, Berlin 1978
- N 9 - Spagnoio, Fhys. Rev. Led. [26] P. Hanggi and F. Mojtabai, Phys. Rev. 26, 1168(1982.

(200_0' . [27] R. F. Grote and J. T. Hynes, J. Chem. PH§®.2715(1980.
[10] M. Bier and R. D. Astumian, Phys. Rev. Leftl, 1649(1993. [28] E. Wigner, Phys. Rev0, 749 (1932.

[11] J. Ray Chandhuri, G. Gangopadhyay, and D. S. Ray, J. Chenfag] M. Hillery, R. F. O’Connell, M. O.Scully, and E. P. Wigner,

Phys.109, 5565(1998. Phys Repl106 121(1984.
[12] J. Ray Chandhuri, B. C. Bag, and D. S. Ray, J. Chem. Phys30] R. Zwanzig, J. Stat. Phy$, 215(1973.
111, 10852(1999. [31] K. Lindenberg and B. J. WesThe Nonequilibrium Statistical
[13] S. K. Banik, J. Ray Chandhuri, and D. S. Ray, J. Chem. Phys.  Mechanics of Open and Closed Systefd€H, New York,
112 8330(2000. 1990.
[14] J. Ray Chandhuri, S. K. Banik, B. C. Bag, and D. S. Ray, Phys[32] H. Risken and K. Vogel, ifrar From Equilibrium Phase Tran-
Rev. E63, 061111(2002. sition, edited by L. Garrido, Lecture Notes in Physics Vol. 319
[15] W. H. Louisell, Quantum Statistical Properties of Radiation (Springer-Verlag, Berlin, 1988
(Wiley, New York, 1973. [33] L. Farkas, Z. Phys. ChenflLeipzig) 125 236 (1927.

[16] G. Gangopadhyay and D. S. Ray,Advances in Multiphoton [34] Ke-Gang Wang and J. Masohver, Physic234, 615(1996.
Processes and Spectroscoggdited by S. H. Lin, A. A. Vil-  [35] B. Sundaram and P. W. Milonni, Phys. ReV5E 1971(1995.
layes, and F. FujimurgWorld Scientific, Singapore, 1993 [36] R. F. Fox and T. C. Elston, Phys. Rev.4B, 3683(1994).

\ol. 8. [37] S. Chandhuri, G. Gangopadhyay, and D. S. Ray, Phys. Rev. E
[17] W. H. Miller, J. Chem. Phys62, 1899(1975; P. G. Wolynes, 54, 2359(1996.
Phys. Rev. Lett47, 968(1981; W. H. Miller, S. D. Schwartz, [38] B. C. Bag, S. Chaudhuri, J. Ray Chandhuri, and D. S. Ray,
and J. W. Tromp, J. Chem. Phy&9, 4889(1983. Physica D96, 47 (1999.
[18] J. Cao and G. A. Voth, J. Chem. Phy€5 6856(1996. [39] B. C. Bag and D. S. Ray, J. Stat. Phg§, 271 (1999.

021109-13



